
Københavns
Universitet

Mechanism Design
Exercises for Lecture 4

Fall 2024
Prof. Egor Starkov

Exercises for Lecture 4:

Revenue equivalence

Problem 1: Payoff equivalence in BIC mechanisms

Prove the payoff equivalence result for BIC mechanisms using the analog of the argument we had for DSIC

mechanisms (i.e., by showing monotonicity first). Assume that players’ types are mutually independent.

Solution

BIC IC constraints for types θi and θ̂i to not be willing to mimic each other are:

Eθ−i [θik(θi, θ−i)− t(θi, θ−i)] ≥ Eθ−i

[
θik(θ̂i, θ−i)− t(θ̂i, θ−i)

]
, (1)

Eθ−i

[
θ̂ik(θi, θ−i)− t(θi, θ−i)

]
≤ Eθ−i

[
θ̂ik(θ̂i, θ−i)− t(θ̂i, θ−i)

]
. (2)

Add and subtract Eθ−i

[
θ̂ik(θ̂i, θ−i)

]
from the right-hand side of (1) to obtain

Ūi(θi) ≥ Ūi(θ̂i) + (θi − θ̂i)Eθ−i

[
k(θ̂i, θ−i)

]
, (3)

where Ūi(θi) is the interim expected utility of type θi from truthtelling: Ūi(θi) ≡ Eθ−i
[θik(θi, θ−i)− t(θi, θ−i)] =

Eθ−i [U(θi, θ−i)]. Doing an analogous manipulation with (2), combining the resulting inequality with (3),

and rearranging the two then yields the following, under the assumption that θi > θ̂i (you can do the same

with the converse):

Eθ−i
[k(θi, θ−i)] ≥

Ūi(θi)− Ūi(θ̂i)

θi − θ̂i
≥ Eθ−i

[
k(θ̂i, θ−i)

]
. (4)

The expected allocation k̄i(θi) ≡ Eθ−i
[k(θi, θ−i)] is thus monotone in θi. Monotonicity implies continuity

almost everywhere, hence the following is true for almost all θi:

lim
θ̂i→θi

k̄i(θ̂i) = k̄i(θi). (5)

Now take limits of (4) as θ̂i → θi. By the theorem about two policemen1 together with (5), we have that

lim
θ̂i→θi

Ūi(θi)− Ūi(θ̂i)

θi − θ̂i
= k̄i(θi) (6)

for almost all θi. The left-hand side of (6) is the definition of the derivative of Ūi, hence
dŪi(θi)

dθi
exists and

dŪi(θi)
dθi

= k̄i(θi) almost everywhere.2 Applying the Fundamental theorem of calculus, we get that for any θ̂i,

1https://en.wikipedia.org/wiki/Squeeze_theorem
2At points of discontinuity of k̄i(θi), function Ūi(θi) will have a kink, and all values between the two limits limθ̂i↗θi

k̄i(θ̂i)

and limθ̂i↘θi
k̄i(θ̂i) will be subderivatives of Ūi at that point. For purposes of applying the Fundamental theorem of calculus,

we can safely take k̄i(θi) to mean the derivative of Ūi at such points.
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the following holds:

Ūi(θi) = Ūi(θ̂i) +

∫ θi

θ̂i

k̄i(s)ds (7)

= Ūi(θ̂i) +

∫ θi

θ̂i

Eθ−i
[k(s, θ−i)] ds. (8)

We have obtained the envelope representation of payoffs, and now we can make the final step towards the

revenue equivalence. Recall that

Ūi(θi) = Eθ−i
[θik(θi, θ−i)− t(θi, θ−i)]

⇔ Eθ−i
[t(θi, θ−i)] = −Ūi(θi) + Eθ−i

[θik(θi, θ−i)]

= −Ūi(θ̂i)−
∫ θi

θ̂i

Eθ−i
[k(s, θ−i)] ds+ Eθ−i

[θik(θi, θ−i)] .

Therefore, for any two BIC DRMs x = (k, t) and x′ = (k′, t′), if Eθ−i
[θik(θi, θ−i)] = Eθ−i

[θik
′(θi, θ−i)], then

Eθ−i
[t(θi, θ−i)]− Eθ−i

[t′(θi, θ−i)] = −Ūi(θ̂i) + Ū ′
i(θ̂i),

where on the RHS we have the equilibrium (truthtelling) utilities of some fixed type θ̂i in the two mechanisms.

Denoting this difference by hi proves the statement of revenue equivalence.3

Problem 2: Efficient public good provision 2

Consider the public good provision problem from the previous problem set, described as follows.

There is a society of N people. They must collectively decide whether to implement a public project. Let

k ∈ {0, 1} denote the outcome of this decision: k = 1 if project is implemented, k = 0 otherwise. Every

person i has some private valuation θi ∈ R for the project, positive or negative. Preferences are linear, so

i’s utility can be written as

ui(x, θ) = θik(θ)− ti(θ).

Here x = (k, t) stands for some direct mechanism which prescribes outcome k(θ) ∈ {0, 1} and payment

profile t(θ) given profile of reports θ.

1. Fix an arbitrary i and θ−i and suppose that we want to implement (in dominant strategies) an allocation

rule that satisfies ki(θi, θ−i) = I{θi ≥ θ̃i} for some θ̃i (where I{·} is an indicator function).

Use the envelope representation of payoffs to derive the (class of) transfer rule(s) for i that DS-

implements ki given θ−i.

2. Suppose the public project has cost c > 0. Find the efficient allocation rule k∗(θ). Use your findings

from the previous question to derive the (class of) transfer rule(s) for all players that implements k∗

in dominant strategies.

3. Conclude that only Groves’ transfers can DS-implement k∗ in this problem.

3To clarify why exactly we can denote hi ≡ −Ūi(θ̂i) + Ū ′
i(θ̂i): note that once we fix some respective “comparison types” θ̂i

for every player i, this expression only depends on the identity of player i, but not on their actual type θi, and not on other
players’ reports θ−i.
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Solution

1. ERP for DSIC mechanisms tells us that the following must hold in an IC mechanism:

Ui(θi, θ−i) = Ui(θ̃i, θ−i) +

θi∫
θ̃i

ki(s, θ−i)ds

= Ui(θ̃i, θ−i) + I{θi ≥ θ̃i} · (θi − θ̃i)

= Ui(θ̃i, θ−i) + (θi − θ̃i)+

where we have chosen θ̃i as our “anchor” type, and the second line used the allocation rule given in

the problem. The third line above uses the simplifying notation (x)+ ≡ x · I{x > 0} = max{0, x}.
Plugging Ui(θi, θ−i) = θik(θ)− ti(θ), we get the expression for the transfers:

ti(θi, θ−i) = θik(θ)− Ui(θ̃i, θ−i)− (θi − θ̃i)+

=

{
−Ui(θ̃i, θ−i) if θi < θ̃i,

θ̃i − Ui(θ̃i, θ−i) if θi ≥ θ̃i.

Importantly, ERP implies that the transfer rule must satisfy the form above to support the desired ki
rule – no other transfer rules would work.

2. We can account for the cost by including it in the preferences of the principal: u0(x, θ) = −ck+
∑N

i=1 ti.

Then the efficient allocation rule is

k∗(θ) ∈ arg max
k∈{0,1}

N∑
i=0

ui((k, t), θ)

∈ arg max
k∈{0,1}

{(
N∑
i=1

θi − c

)
k

}

= I

{
N∑
i=1

θi > c

}
.

Note that it fits the representation given in the previous question, with θ̃i ≡ c −
∑

j ̸=i θj . Hence a

transfer rule t(θ) DS-implements k∗(θ) if and only if it satisfies

ti(θi, θ−i) =

{
hi(θ−i) if θi < θ̃i,

c−
∑

j ̸=i θj + hi(θ−i) if θi ≥ θ̃i,
(9)

where hi(θ−i) ≡ −Ui(θ̃i, θ−i).

3. It is easy to see that (9) is exactly the expression for Groves’ transfers in this problem, and ERP implies

that in any DSIC mechanism with allocation rule k∗, the transfer rule must satisfy (9). The statement

in the question then follows.

Problem 3: Implementation in auctions

Consider the auction environment with two buyers and one item for sale. Suppose that each buyer i has

willingness to pay θi ∈ [0, 1].

1. Draw a square with θ1 on the horizontal axis and θ2 on the vertical axis. A point in the square
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represents a profile (θ1, θ2).

2. Draw a downward sloping curve through the box.

3. Draw an upward sloping curve through the box that intersects the downward sloping curve (exactly

once.)

4. The region above your downward sloping curve is divided into two subregions by your upward sloping

curve. Label the subregion that is above your upward sloping curve with a 2 and label the other

subregion with a 1. Label the entire region that is below (and to the left of) your downward sloping

curve with a 0.

5. Consider the allocation rule that is defined by your drawing. In the 1 region agent 1 gets the good, in

the 2 region agent 2 gets the good and in the 0 region neither agent gets the good. (On the boundary

between regions pick the allocation from one of the neighboring regions. ) Find a transfer rule which,

when coupled with your allocation rule, forms a DSIC mechanism.

Hint: you will probably need to use the envelope representation of payoffs:

Ui(θi, θ−i) = Ui(θi, θ−i) +

∫ θi

θi

ki(s, θ−i)ds

In particular, you can derive transfers that support k using the expression above. But if you did Problem

3 above, you already know that.

6. Is there any DSIC allocation rule that picks alternatives from the set {0, 1, 2} that could not be

represented by a drawing that follows the instructions given above?

(If not: argue verbally why not. If yes: draw a graph and argue intuitively why the k you drew would

be DSIC.)

Solution

We will work with Figure 1a. Of course, there will be some things that are specific to the drawing, but the

way we will solve the exercise should illustrate the general procedure for different figures.

Based on the figure, we construct the following allocation:

k1(θ1, θ2) =

{
0 if θ2 + a2θ1 ≤ b2 or θ2 ≥ b1 + a1θ1

1 otherwise

k2(θ1, θ2) =

{
0 if θ2 + a2θ1 ≤ b2 or θ2 ≤ b1 + a1θ1

1 otherwise

We know that the allocation must be monotone for it to be implementable. However, it is very easy to

check (just observe the drawing) that fixing the type of the other player, the probability of getting the

good weakly increases with the player’s type. Now we have to construct the transfers to implement this in

dominant strategies. We will make use of the envelope representation of utility, mainly of the result that:

ti(θi, θ−i) = θiki(θi, θ−i)− Ui(θi, θ−i)−
∫ θi

θi

ki(u, θ−i)du (10)

are the transfers that work.

Let’s start with t1(θ1, θ2). Note that if θ2 > θ̃2, then no matter what type player 1 announces, k1(·, θ2) = 0.

Hence, t1(θ1, θ2) = 0 for θ2 > θ̃2. Consider now θ2 ∈ [θ̂2, θ̃2]. In that case, k1(θ1, θ2) = 1 if and only if
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θ1

θ2

0

1

1

θ2 = a1θ1 + b1

θ2 = b2 − a2θ1

θ̃2

θ̂2

θ̂1

Panel (a): k(θ) fitting the problem

k = 0

k = 2

k = 1

θ1

θ2

Panel (b): k(θ) not fitting the problem

Figure 1: Allocation rules for Problem 3.

θ1 ≥ θ2−b1
a1

. Then for θ2 ∈ [θ̂2, θ̃2]:

t1(θ1, θ2) =

{
0 if θ1 ≤ θ2−b1

a1
θ2−b1
a1

otherwise

where the last part comes from using (10) and noticing that θ1 = θ2−b1
a1

and setting U1(θ1) = 0:

t1(θ1, θ2) = θ1 −
∫ θ1

θ2−b1
a1

1du =
θ2 − b1

a1

Finally, consider θ2 ≤ θ̂2. In that case, k1(·, θ2) = 0 for θ1 ≤ b2−θ2
a2

= θ1. Then, in that case:

t1(θ1, θ2) =

{
0 if θ1 ≤ b2−θ2

a2
b2−θ2
a2

otherwise

Notice that, apart from Problem 3 saying it is the case, it is clear why the mechanism is DSIC: whether the

player pays or not depends on his announcement, but not how much he pays. In this sense, it is like an SPA.

We can calculate the transfers for player 2 in a similar manner. Consider θ1 < θ̂1. Then, k2(θ1, θ2) = 0 if

θ2 ≤ b2 − a2θ1. Then,

t2(θ1, θ2) =

{
0 if θ2 ≤ b2 − a2θ1

b2 − a2θ1 otherwise

On the other hand, if θ1 ≥ θ̂1, we have that k2(θ1, θ2) = 0 if θ2 ≤ a1θ1 + b1. Then:

t2(θ1, θ2) =

{
0 if θ2 ≤ b1 + a1θ1

b1 + a1θ1 otherwise

Now for the last part of the question: whether there exists a DSIC allocation rule that cannot be represented

by a drawing described in the problem. The answer is yes, one example is as follows. Consider the allocation
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depicted in Figure 1b, which is given by (the exact numbers do not matter):

k(θ1, θ2) =


1 if θ1 ≥ max{0.7− θ2, 0.2 + θ2};
2 if θ2 ≥ max{0.7− θ1, 0.2 + θ1};
0 otherwise.

This allocation is again monotone for each player (ki weakly increasing in θi given fixed θj). We can construct

the transfers that DSIC-implement it in the same way as we did in the main problem above (using (10)).

Problem 4: Payoff equivalence in auctions

Consider an auction for one item and N bidders with valuations θi ∼ i.i.d.U [0, 1] and linear preferences.

Consider three different auction formats, in which all bidders submit bids simultaneously:

• First-price sealed bid auction, in which the highest bidder wins the item and pays their own bid. In

such a format with θi ∼ U [0, 1], bidder i’s equilibrium bidding strategy is bFPA
i = N−1

N θi.

• Second-price sealed bid auction, in which the highest bidder wins and pays the second-highest bid. In

such a format, it is a weakly dominant strategy for bidder i to bid their valuation: bSPA
i = θi.

• All-pay auction, in which all bidders pay their bids, and the highest bidder wins the item. In such a

format with θi ∼ U [0, 1], bidder i’s equilibrium bidding strategy is bAPA
i = N−1

N θNi .

Calculate the bidders’ (interim) expected payoffs and the auctioneer’s (ex ante) expected revenues under the

three formats. Verify that they are the same across the three cases.

Bonus question: verify that the bidding functions given for FPA and APA do indeed constitute an equilib-

rium.

Solution

We use the following notation conventions, given some player i:

Ūi(θi) ≡ Eθ−i

[
θik̄i(θi)− t̄i(θi)

]
,

θ(2) ≡ max
j∈{1,...,N}\{i}

θj .

(The θ(2) is a slightly weird piece of notation, since its value depends on both the i’s identity and the type

profile θ, neither of which is reflected in the notation – which should be more like θ(2),i(θ) or θ(2)(θ−i). Both

of the latter options feel quite heavy though, hence we use simply θ(2).)

Further, it will prove useful to derive the distribution of maxi∈{1,...,N} θi. Its cdf is given by ΦN (x) such that

ΦN (x) = P
{

max
i∈{1,...,N}

θi ≤ x

}
=

∏
j∈{1,...,N}

P {θj ≤ x}

=
∏

j∈{1,...,N}

Φj(x) = xN ,
(11)

for x ∈ [0, 1], where the second equality follows from the independence of players’ valuations, and the final

equality uses θj ∼ U [0, 1] ⇒ Φj(x) = x for x ∈ [0, 1]. The respective pdf is then given by ϕN (x) = NxN−1.
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FPA. Given the proposed bidding strategy, the highest-valuation player wins the item. Bidder i’s interim

expected payoff is

Ūi(θi) = Eθ−i

[(
θi −

N − 1

N
θi

)
· I {θi > θj ,∀j ̸= i}

]
= Eθ−i

[
θi
N

· I {θi > θj ,∀j ̸= i}
]

=
θi
N

· Eθ−i

[
I
{
θi > θ(2)

}]
where the third inequality follows from the definition of θ(2) and from θi

N being independent of θ−i. Then

since θi is fixed, and the expectation of an indicator of an event is simply the probability of this event, we

get

Ūi(θi) =
θi
N

· P
{
θ(2) < θi

}
=

θi
N

· ΦN−1(θi) =
θi
N

· θN−1
i =

θNi
N

.

To show that the suggested strategy indeed constitutes an equilibrium, take some bidder i, suppose all other

players bid according to bj(θj) =
N−1
N θj , and maximize i’s interim expected utility w.r.t. their bid bi:

Ūi(bi, θi) = Eθ−i

[
(θi − bi) · I

{
bi >

N − 1

N
θj ,∀j ̸= i

}]
= (θi − bi) · ΦN−1

(
Nbi
N − 1

)
= (θi − bi) ·

(
Nbi
N − 1

)N−1

.

Taking the FOC of the maximization problem and solving it for bi, we get

dŪi(bi, θi)

dbi
=

(
N

N − 1

)N−1 [
(N − 1)θib

N−2
i −NbN−1

i

]
= 0

⇒ b∗i =
N − 1

N
θi,

as conjectured.

Moving on to the designer’s profit:

Eθ[R] = Eθ[−t0(θ)] = Eθ

[
N∑
i=1

ti(θ)

]

= Eθ

[
max

i∈{1,...,N}
bi(θi)

]
= Eθ

[
max

i∈{1,...,N}

N − 1

N
θi

]
=

N − 1

N
Eθ

[
max

i∈{1,...,N}
θi

]
=

N − 1

N

∫ 1

0

xϕN (x)dx

=
N − 1

N

∫ 1

0

NxNdx

=
N − 1

N + 1
.
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In the end, in the FPA, Ūi(θi) =
θN
i

N and Eθ[R] = N−1
N+1 .

APA Following the same logic,

Ūi(θi) = Eθ−i

[
θi · I {θi > θj ,∀j ̸= i} − N − 1

N
θNi

]
= θi · θN−1

i − N − 1

N
θNi =

θNi
N

.

In the second equality above, the first term is obtained using the exact same calculations as for FPA, and

the second term lacks the expectation because it does not depend on θ−i.

To verify that the proposed strategy is optimal, proceed as in FPA:

Ūi(bi, θi) = Eθ−i

[
θi · I

{
bi >

N − 1

N
θNj ,∀j ̸= i

}
− bi

]
= θiΦN−1

((
Nbi
N − 1

) 1
N

)
− bi

= θi

(
Nbi
N − 1

)N−1
N

− bi

⇒ dŪi(bi, θi)

dbi
= θi

(
N

N − 1

)−1
N

b
−1
N
i − 1 = 0

⇒ b∗i =
N − 1

N
θNi ,

as conjectured.

For the designer’s expected revenue,

Eθ[R] = Eθ

[
N∑
i=1

ti(θ)

]

= Eθ

[
N∑
i=1

N − 1

N
θNi

]

=

N∑
i=1

N − 1

N
Eθi

[
θNi
]

= (N − 1)

∫ 1

0

xNdx

=
N − 1

N + 1
.

The third equality above splits the expectation of the sum into the sum of expectations (using the linearity

of the expectation operator) and notices that the expectation of θNi only depends on the realization of θi,

but not on any of the other θj . The fourth equality collapses the sum (since all the expectations are equal,

due to symmetric distribution of valuations) and rewrites the expectation explicitly (with the pdf of θi being

ϕ(x) = 1 for x ∈ [0, 1]).
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SPA Interim expected utility for the bidder:

Ūi(θi) = Eθ−i

[(
θi − θ(2)

)
· I {θi > θj ,∀j ̸= i}

]
= θi · θN−1

i − Eθ−i

[
θ(2) · I {θi > θj ,∀j ̸= i}

]
= θNi − Eθ(2)

[
θ(2) · I

{
θ(2) < θi

}]
= θNi −

∫ 1

0

[x · I {x < θi}] (N − 1)xN−2dx

= θNi − (N − 1)

∫ θi

0

xN−1dx

= θNi − N − 1

N
θNi =

θNi
N

.

In the above, the second equality uses the same calculation as FPA for the first term. All other manipulations

concern the second term. The third equality notices that out of all information about all θ−i, only θ(2) is

relevant. The fourth equality writes the expectation down explicitly, using the distribution obtained in (11).

The remainder is just algebra.

The expected revenue of the designer is given by:

Eθ[R] = Eθ

[
N∑
i=1

ti(θ)

]
= Eθ

[
θ(2)
]
.

However, the meaning of θ(2) is different here, which should ideally be reflected in the notation but isn’t.

In the previous cases, when we took θi as fixed and took expectation over θ−i, it was the case that simply

θ(2) = maxj∈{1,...,N}\{i} θj , i.e., it was the highest valuation among N − 1 bidders. Now, though, we

need to genuinely calculate the second-highest bid among N bidders. We can derive its pdf ϕ(2)(x) as the

probability/density, for any x, that exactly N − 2 valuations are below x, one valuation is at x, and one

valuation is above x. Since the latter two can belong to any bidder, there are a total ofN(N−1) permutations.

In the end:

ϕ(2)(x) = N(N − 1) · xN−2 · 1 · (1− x)

⇒ Eθ[R] = Eθ

[
θ(2)
]
=

∫ 1

0

xN(N − 1)xN−2(1− x)dx

= N(N − 1)

[∫ 1

0

xN−1dx−
∫ 1

0

xNdx

]
= N(N − 1)

[
1

N
− 1

N + 1

]
= N(N − 1)

1

N(N + 1)
=

N − 1

N + 1
.

Hence we see that bidders’ interim expected utilities and the designer’s expected revenue are indeed the

same across all three formats.
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