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Testing Implementability

The running question for now:

How can we check whether a given s.c.f. f (θ) is implementable?

We have seen an answer for the Euclidean setting (k should be monotone).

As nice as it is, Euclidean setting is very restrictive, mainly due to the u(x , θ) = θk − ti
payoff function.

What about more general settings?
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Euclidean setting: refresher

Reminder: monotonicity for Euclidean problems.

Note: only the players’ preferences are required to be linear for this to hold; the principal can have

non-linear prefs.

In a Euclidean setting, k(θ) is implementable only if it is monotone.

Turns out, this is a sharp characterization:
if k(θ) is monotone, there exist transfers t such that Γ = (Θ, (k, t)) is DSIC.

Monotonicity may require k(θ) to be either weakly increasing, or weakly decreasing, depending on

the problem.

To prove: use the relevant ERP to construct all transfers; can then show that the resulting

mechanism is DSIC/BIC as needed.
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Quasilinear setting: result 1

Extension to quasilinear setting:

Suppose we are fine with one-dimensional ki and θi , but want to consider more general

payoff functions vi (ki , θi ).

Theorem (Monotonicity in qlin setting)

In the quasilinear setting: if Ki ,Θi ⊂ R, Θi is bounded, and
∂2vi (ki ,θi )
∂ki∂θi

> 0, then:

if ki (θ) is weakly increasing in θi for all i then k is DSIC.

In words: if θi and ki are complements from i ’s standpoint, then it is sufficient for k to be
monotone to be implementable.

(Necessity probably also holds in this formulation, but I haven’t checked)

See Börgers ch.5.6 for details (including what boundedness of Θi means).
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Quasilinear setting: result 2

What follows is a couple more results for the quasilinear setting with no restrictions on K or Θ.

Definition (weak q-monotonicity)

Allocation k is weakly q-monotone if for all i , θ′i , θ
′′
i , θ−i :

vi (k(θ
′
i , θ−i ), θ

′
i )− vi (k(θ

′′
i , θ−i ), θ

′
i ) ≥ vi (k(θ

′
i , θ−i ), θ

′′
i )− vi (k(θ

′′
i , θ−i ), θ

′′
i )

Theorem (Necessity of weak monotonicity in qlin setting)

In the quasilinear setting: if k is DSIC then k is weakly q-monotone.

So k must be weakly q-monotone to be implementable.

But weak q-monotonicity does not guarantee implementability.

But we can strengthen this...
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Quasilinear setting: result 3

Definition (cyclical q-monotonicity)

Allocation k is cyclically q-monotone if for all i , θ−i , and all sequences (θ1i , θ
2
i , ..., θ

M
i ) ∈ ΘM

i of

arbitrary length M s.t. θMi = θ1i , the following holds:

M−1∑

m=1

[
vi (k(θ

m
i , θ−i ), θ

m+1
i )− vi (k(θ

m
i , θ−i ), θ

m
i )

]
≤ 0

Theorem (Rochet [1987])

In a quasilinear setting: k is DSIC if and only if k is cyclically q-monotone.

Note: “Weak q-monotonicity” = “cyclical q-monotonicity for M = 3”. See Börgers, ch.5.3-5.4

for proofs or references to proofs (for N = 1). See rest of ch.5 for other kinds of monotonicity

for quasilinear setting.
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General setting: monotonicity

Without transfers, interesting results come up...

Definition (outcome g-monotonicity)

In a general setting, outcome x is g-monotone if for all θ′, θ′′ ∈ Θ the following holds:

if for all i and all x ′ ∈ X s.t. ui (x(θ
′), θ′) ≥ ui (x

′, θ′) it holds that
ui (x(θ

′), θ′′) ≥ ui (x
′, θ′′),

then x(θ′′) = x(θ′).

In words, if under θ′′ everyone likes x(θ′) more than under θ′, then we give x(θ′) under θ′′.

Theorem (Necessity of monotonicity in general setting)

In the general setting: if x is DSIC and x(Θ) = X then x is g-monotone.

(This is not THE interesting part yet. The next result is.)
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General setting: dictatorship 1

Assumption (Domain)

Assume type sets Θi are rich enough to contain all possible (ordinal) preferences over X for all

i .

Definition (dictatorial s.c.f.)

S.c.f. f is called dictatorial if there exists i ∈ N s.t. for all type profiles θ:

f (θ) ∈ argmaxx ui (x , θi ).
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General setting: dictatorship 2

Theorem (Gibbard [1973], Satterthwaite [1975])

In a general setting with |X | ≥ 3: if x(Θ) = X and the domain assumption holds, then

x is DSIC if and only if x is dictatorial.

To clarify, x(Θ) ≡ {x ∈ X | ∃θ : x(θ) = x} is the set of “outcomes that could be

prescribed for some θ ∈ Θ”.

Note: restriction x(Θ) = X is irrelevant for this result.

If x(Θ) ⊂ X , then only preferences over alternatives in x(Θ) are relevant, and we will still

have a dictatorship on x(Θ). This is something we’ll come back to later.

GS theorem is the mechanism design version of Arrow’s theorem from social choice.
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General setting: dictatorship 3

The missing link between the two results above is this:

Theorem (Monotonicity implies dictatorship)

In a general setting with |X | ≥ 3: if x(Θ) = X and the domain assumption holds, then

if x is g-monotone then x is dictatorial.

For a proof of GS thm, see Narahari ch.17

All three results for the general setting hold with ordinal preferences (≿i ) too, they do not

rely on cardinal utilities ui .

The GS thm is also extendable to infinite X .
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General setting: Takeaways

It seems like GS thm is a strong negative result saying “we can’t implement anything

unless it’s dictatorial!”. But we obviously can: we’ve seen examples (like VCG). Where is

the contradiction?

The source of evil in GS thm is the domain assumption (“any preference is possible”).
We often know something about some players’ preferences, so can restrict the set of
possible preferences.

E.g., quasilinear prefs: “everyone always likes money/transfers”. Then at least the efficient allocation

rule k∗(θ) is implementable (and typically not dictatorial!)

Another common example is the single-peaked preferences, explored below.

Further, dictatorship is not a sentence!

With N = 1, all mechanisms are by definition dictatorial – yet they can still be useful!
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Next steps

We will now look at a few examples of mechanisms without transfers, dictatorial and not.

These will show what kind of mechanisms we can have if we relax the domain assumption

(similar to assuming we have access to transfers) and what kinds of instruments we can

use.
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Example 1: Voting with single-peaked preferences

Setup:

There are M alternatives that are ordered in some sense:

X = (x1, x2, ..., xM) with x1 < x2 < ... < xM .

There are N players with private single-peaked ordinal preferences ≿i (θi ) over x ∈ X

An ordinal preference relation ≿i (θi ) is called single-peaked if ∃x∗(θi ) s.t. for any xk < xl ≤ x∗(θi ),
xl ≿i xk , and for any x∗(θi ) ≤ xk < xl , xk ≿i xl .

Think “utility function ui (x , θi ) that is increasing between x1 and x∗(θi ) and decreasing between

x∗(θi ) and xM”.

Example: policy debate on a one-dimensional issue – corporate tax rate, level of the

unemployment benefits, openness of the immigration policy, level of governmental

oversight over media/internet.

Question:

Can we implement any non-dictatorial s.c.f. f (θ)?
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Single-peaked: Pairwise majority voting

If we allowed arbitrary preferences over X , then GS thm says “no, only dictatorship is incentive

compatible”. But we assumed single-peakedness, so GS thm does not hold:

Theorem

In the setting defined above, if the number of players N is odd, then pairwise majority voting

selects the peak of the median voter.

Pairwise Majority Voting: for any pair xk , xl , if the majority of voters prefers xk to xl
(according to their reported types (θ1, ..., θN)), then say that xk is socially preferred to xl .

After comparing all pairs, select the one that is socially preferred to all others.

Without single-peakedness, Condorcet cycles (x1 ≻S x2 ≻S x3 ≻S x1) may arise in the

social preference from PMV. But if individual prefs are single-peaked, soc pref is well

defined, its most preferred alternative exists, and coincides with the median voter’s most

preferred alternative. (See MWG, theorems 21.D.1-2.)
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Single-peaked: Takeaways

We can often make some assumptions on players’ prefs, which make some non-dictatorial

s.c.f.s implementable.

In the problem of social choice on a one-dimensional issue, the median voter’s ideal option

is preferred by the majority.
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Example 2: Delegation

Setup: (following Holmstrom [1980])

Consider a principal-agent model with one principal/designer and one agent, with the

respective payoffs given by quadratic loss functions:

uP(x , θ) = −α(x − θ)2

uA(x , θ) = −α(x − θ − b)2,

where θ ∼ U[0, 1] is the state of the world only known by the agent; α ≥ 0 and

b ∈ [0, 1/2] are commonly known parameters; and x ∈ R is the decision to be made.

The principal can choose x directly or let the agent choose x ∈ X while restricting the set

of options X ⊆ R available to the agent.

Question: how should the principal act?
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Delegation: Solution 1

Note that this can be seen as a mechanism design problem, in which the agent reports θ,

and the principal commits to some decision rule x(θ).

The agent then effectively chooses x from the set x(Θ).

Solution:

The agent’s FOC for x given θ is

(−2α)(x − θ − b) = 0

So the agent selects x∗(θ) = θ + b if it is available; x ∈ X closest to x∗(θ) otherwise.

The principal would ideally prefer xP(θ) = θ.
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Delegation: Solution 2

Lemma

The optimal delegation set X is convex (i.e., an interval).

Proof: suppose not, and the principal’s chosen X has x1, x2 ∈ X and (x1, x2) /∈ X . (Formally,

there are more cases to consider, but we ignore those.) Consider an alternative delegation set

X ′ ≡ X ∪ (x1, x2).

X and X ′ yield the same payoff to the principal when θ /∈ (x1 − b, x2 − b), since then all

x ∈ (x1, x2) are dominated for the agent by either x1, or x2. I.e., the agent’s choice is the same

from X and X ′ for such θ.

Suppose θ ∈ (x1 − b, x2 − b). Under X ′, the agent plays x∗(θ) for all such θ, hence

x(θ)− θ = b for all such θ. Under X , the agent plays x1 or x2; can show that

E [x(θ)− θ | θ ∈ (x1 − b, x2 − b)] = b in that case as well.

The principal’s payoff is a concave function of x − θ, hence (by Jensen’s inequality) the principal

prefers constant x − θ to a lottery with the same mean – hence X ′ is better than X ! 22



Delegation: Solution 3

So the optimal delegation set is X = [x , x̄ ]. Agent wants to take higher actions than the

principal ⇒ no sense restricting them from the bottom ⇒ x = 0 (or x = −∞). Actions x ≥ 1

never optimal for the principal, hence the upper limit must be x̄ ≤ 1. Principal’s expected

payoff is

E
[
−α (x(θ)− θ)2

]
= −α

[∫ x̄−b

0

(x∗(θ)− θ)2 dθ +

∫ 1

x̄−b

(x̄ − θ)2dθ

]
.

Maximizing over x̄ yields the optimal upper limit x̄ = 1− b.

Final answer: the optimal delegation set is X = [0, 1− b].

Or, in mechanism design terms, the optimal direct mechanism is x(θ) = min {θ + b, 1− b}.
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Delegation: Takeaways

Takeaways regarding the problem:

Delegation is a prominent problem in organizational econ.

Makes sense to restrict the agent where there’s conflict (high x), not where there’s none

(low x).

Broader takeaways:

Even dictatorial mechanisms can be useful for the principal (again, have N = 1 in this

problem, so the mechanism is by definition dictatorial).

An example of the applicability of mechanism design (not immediate from the start how

this is a mechdesign problem).

An example on the usefulness of indirect mechanisms IRL (note that the actual delegation

does not require the principal to commit to a decision rule).
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Example 3: Communication

Another prominent question in org.econ is “delegation vs communication”: is it better

to ask the agent to report the state to the principal, or should we just let the agent make

the decision?

While it’s not necessarily in the mechanism design realm, this relates to our broad

question of “how to best extract private information from the players?”
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Cheap talk: setup

Setup: (following Crawford and Sobel [1982])

Same as before: one principal/designer, one agent, with payoffs given by quadratic loss

functions:

uP(x , θ) = −α(x − θ)2

uA(x , θ) = −α(x − θ − b)2,

where θ ∼ U[0, 1] is the state of the world privately known by the agent; α ≥ 0 and

b ∈ [0, 1/4] are commonly known parameters; and x ∈ R is the decision to be made.

NEW: The principal asks the agent to report θ, then (principal) chooses x given the

report to maximize their payoff, cannot commit to a decision rule.

Question: how much can the principal learn about the state? (In MD lingo: which s.c.f. x(θ)

are implementable?)
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Cheap talk: comments

Due to no-commitment assumption, the principal will always choose x(m) = E[θ|m] after
message m.

Can see this as a MD problem with two players: the agent and the future principal – but it’s a

stretch.

More reasonable interpretation – MD problem (with 1 agent) with an additional constraint

(principal’s ex post compliance).

This model is known as a game of cheap talk communication, since the agent can

message about θ but has no evidence to back up their claim – in contrast to models of

verifiable disclosure.
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Cheap talk: solution 1

Again, de facto dictatorship: principal offers a set of options X to the agent.

Again, need to figure what the agent’s IC conditions (together with the principal’s ex post

IC) imply for how x(θ) can and cannot look like.

The principal’s IC implies that for all θ, x(θ) = E[θ′ | x(θ′) = x(θ)].

Statement: all implementable X are finite: X = {x1, ..., xK}, with options at least b

apart.
Proof: suppose x ′, x ′′ ∈ X with x ′′ − x ′ ∈ (0, b). Then for all θ ≥ x ′, the agent prefers x ′′

to x ′, so x(θ) ̸= x ′ for such θ. But then E[θ | x(θ) = x ′] < x ′, a contradiction with the
principal’s IC.

The exact opposite of delegation!

This is fully due to the principal’s IC. What constraints does the agent’s IC add?
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Cheap talk: solution 2

It is immediate that x(θ) must be increasing (by the standard monotonicity argument –

just look at the pair of the agent’s mutual IC conditions for some θ′, θ′′).

So any option x ∈ X is chosen on an interval of states (or nowhere):

{θ | x(θ) = xk} = [θk−1, θk ], where.

Can we figure out the interval boundaries? Yes, easy: when θ = θk , the agent must be

indifferent between xk and xk+1 (so θk + b ∈ [xk , xk+1]):

−α(xk − θk − b)2 = −α(xk+1 − θk − b)2 ⇐⇒ θk + b − xk = xk+1 − θk − b.

Further, from the principal’s IC and the uniform distribution:

xk = E[θ | x(θ) = xk ] =
θk−1 + θk

2
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Cheap talk: solution 3

Combining the two conditions yields a recurrent equation on {θk}:

θk−1 − 2θk + θk+1 = 4b.

Final answer: any sequence {θk}Kk=0 that satisfies the equation above and the boundary

conditions θ0 = 0, θK = 1 characterizes an implementable s.c.f.

Can show: there is an upper bound K̄ (b) such that for any K ∈ {1, ..., K̄ (b)}, there exists
an implementable s.c.f. with K options in the choice set.

Alternative (original) interpretation: for every K ∈ {1, ..., K̄(b)}, there exists a corresponding

equilibrium of the communication game.

Reminder: in MD, we assume the designer has the power of equilibrium selection!

Both the principal and the agent prefer the more informative/responsive s.c.f. (higher K )
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Cheap talk: results and discussion

1 Can calculate the principal’s payoffs and show that delegation is better than
communication for the principal

Not immediate from the setup of the two respective games.

Counterintuitive that the manager gains from having fewer decision rights under delegation!

Obvious when framed as mechanism design problems: “communication” is “delegation + extra

constraint”.

Lesson: framing problems in MD context can provide clarity!

2 We can deal with extra constraints (like the principal’s ex post IC), no problem! The whole

“MD problem” is exactly about figuring out what the constraints are and what they imply!
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Example 4: Cheap talk with correlated senders

This is a throwback to the previous topic:

Cremer-McLean: “if players’ info is correlated and have access to transfers, can make players bet on

each other’s info to extract all private info at no cost”

That relied on transfers.

Now: show that if players’ info is correlated and preferences not the same, there’s another

channel: setting players against each other

Can extract all info even without transfers! Or commitment!
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Multi-sender cheap talk: Setup

Setup: (based on Battaglini [2002])

Two agents, i ∈ {1, 2}:
both know state ω = (ω1, ω2) ∈ R2;

each sends report m ∈ R2 to the principal.

Principal (“designer”) does not know ω, must choose action a ∈ R2 after hearing

(m1,m2).

Preferences: squared Euclidean distance between a and resp. bliss points

Principal: up(a, ω) = − (∥a− ω∥)2;

Agent i : ui (a, ω) = − (∥a− (ω + bi )∥)2;

where ∥x∥ ≡
√

(x1)2 + (x2)2 for x = (x1, x2) ∈ R2.

Biases bi commonly known.

(Subscripts index i , superscripts stand for coordinates [in default basis] and exponents.)
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Multi-sender cheap talk: Comments

Same basic model as cheap talk of Crawford and Sobel [1982], but now:

two agents

two dimensions for state and actions

notation is different because I didn’t have time to fix it. Actions/options are now a (used to be x).

Cross-verification mechanism may not work because:

1 there’s no punishment that’s universally bad for all ω

2 the principal cannot commit to punishment!
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Multi-sender cheap talk: Idea

Relative positions of bliss points and

indifference curves are fixed; just the absolute

location unknown.

The circles on the graph represent the

indifference curves of the two players.
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Multi-sender cheap talk: Idea

Ask player i to project the state on some axis

orthogonal to bi and report the result.

Will report honestly (i.e., report, which is a

projection of ω + b1, coincides with the

projection of the actual ω).

So we learn one coordinate of the true state.
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Multi-sender cheap talk: Idea

Then with two players, we can learn state

perfectly this way.

(As long as bi linearly independent.)

More generally, two players are enough to

learn the state of any dimensionality n, since

asking either player allows to learn n − 1

dimensions of state.

See Battaglini (2002) for n dimensions and

more general preferences.
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Multi-sender cheap talk: Equilibrium strategies

Consider basis (c1, c2) where bi ⊥ ci ∈ R2 –

i.e., bi · ci = 0 ( ⇐⇒ b1
i c

1
i + b2

i c
2
i = 0).

State ω has unique coordinates (o1, o2) in this

basis, i.e. ω = o1 · c1 + o2 · c2.
Ask A1 to report o1. If A2 reports o2
truthfully, A1 effectively chooses an action on

the green line (see graph).

So truthful reporting is optimal for A1 (green

line is orthog to b1 ⇒ it is tangent to A1’s

circular indifference curve at ω ⇒ any lies õ1
puts the implemented action ω̃ on a lower

indiff curve).
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Multi-sender cheap talk: Pesky details

There are many vectors ci that are orthogonal to a given bi (due to scaling) – select any.

E.g., letting ci =
1

∥bi∥2

[
0 1

−1 0

](
b1i
b2i

)
would yield a vector ci of unit length that is rotated

90 deg clockwise w.r.t. bi .

Formally, the problem setup says that messages are two-dimensional: mi ∈ R2. So to be
100% formal you can say that, e.g., mi = (o i , 0), and that the principal ignores the second
coordinate of each message.

Alternatively: suppose the agents report ω, but then the principal calculates respective oi and makes

the final choice based on them (even (especially!) if reports do not coincide).
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Multi-sender cheap talk: Takeaways

Correlated information is very easy to extract – even when you have no access to transfers and

have commitment issues.
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