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Math Review

This note is meant to remind you of relevant mathematical tools and methods that we will be actively
using throughout the course. The presentation is formal enough for our purposes but omits some other
important details. The topics are not connected with one another, so you may only read sections that are
relevant to you, in any order.

1 Crash course on probability theory

The primary goal of this section is to remind you how to work with continuously distributed random variables.
It does so by building analogies to relevant rules for discrete random variables. To illustrate the rules, we
will use two following random variables:

o x € {1,2,3} with probability distribution function p(x) = /6, meaning that x = 1 with probability
1/6; z =2 w.p. 2/6 and x = 3 w.p. 3/6.
e y € [0,1] with probability density function f(y) = 2y.
Probability density function is the analog of probability distribution function for continiously distributed
random variables. We need it because in most continuous distributions, the probability of any given value

occurring is exactly zero (unless this distribution has atoms — values that occur with strictly positive prob-
ability).

One way to interpret pdf f(y) (“pdf” will always refer to density, not distribution function) is saying it
represents relative likelihoods. For example, y = 0.5 with density f(0.5) = 1 is twice more likely to occur
than y = 0.25 with density f(0.25) = 0.5, but twice less likely than y = 1. Finally, just like probabilities of
all values = can take must sum up to one: Eze{l,z,s} p(z) = 1, the density over the range of y must integrate

to one: fol fly)dy = 1.

1.1 Mathematical expectations

How can we find the mathematical expectation — average value — of a random variable? For discrete random
variables, we weigh each value with the probability of that value occurring:
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To find an expectation of a continuous random variable, we do the exact same thing, except we use integral
instead of the sum (since an integral is pretty much a sum of a continuum of infinitesimally small terms):
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Note that z, as a discrete random variable, can be described by the distribution function p(x), but not
density f(z) (density is not defined for discrete random variables). Conversely, y is a continuous random
variable, and hence has a density f(y), but no distribution function p(x). What if we have some random
variable z and we do not know whether it is discrete or continuous? How can we describe it? Well, we
can always describe it in terms of its cumulative distribution function ("cdf”) F(z): for any number Z,
F(z) € [0,1] denotes the probability that the realization of random variable z turns out to be weakly smaller
than Z. We can then define the mathematical expectation of z as

E[2] = /R dF(2). 3)

Note that while is a useful piece of general notation, for practical purposes of actually calculating an
expectation of some random variable we will want to actually use either (which is equivalent to for
discrete random variables), or (which is equivalent for continuous random variables).

1.2 Events

An event is a collection of realizations of a random variable. For example, if air temperature ¢ (in degrees
C) is the only unknown (random) variable, then the event “it will be warm tomorrow” means something like
“t > 15 tomorrow”.

If we know the distribution of the random variable, we can calculate probabilities of events. For example,
probability of event E, = {x > 2} for random variable x defined above is given by

rEE,

For continuous random variables, we again substitute the sum with the integral. For example, probability
of event E, = {y > 0.5} for y defined above is

1 1
P(E,) = / fly)dy = / fly)dy = / 2ydy = y?|,—o5 =1-0.25=0.75
yeE, y=0.5 y=0.5

1.3 Bayes’ rule and Conditional expectations

We often need to calculate the conditional expectation of a random variable given some event. E.g., we
do not know the exact realization of z, but we know that x > 2. Then we can find the expectation of x
conditional on x > 2 by weighing all possible values of x > 2 by their respective conditional probabilities
(you may recognize this expression as the Bayes’ rule)ﬂ

p(x)
Plelzr 22) = gr =5y
thus obtaining
p(x) 5 :
Elz|z > 2] = ST = -2+ - 3.
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IHere T use p(z) to denote the probability of a given realization 2 and P to denote the probability of a given event, as
generated by p. This distinction is not meaningful, and you can use either p, or P everywhere instead. My goal here was
to show that normally, once the probabilities of different realizations, p(-), are given as a primitive, you can calculate the
probabilities of all other respective events, P(-). Mathematically, however, the two are equivalent, since p is already implied to
be a probability measure on the whole Borel sigma-algebra on the set of realizations of x.
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Note that the denominator does not depend on the realization of x, so we can take it out of the sum. This
means the conditional expectation is equivalent to weighing all possible values of x > 2 by their respective
probabilities, and then normalizing the resulting sum by the probability of the whole event z > 2:

Z,’L‘EQI -p(z)
P{z > 2}
C Desewop(@) -2
3

D az2 P(T)

Elz|z > 2] =

For continuous random variables, we again simply substitute the sums for integrals. Taking the same
event £, = {y > 0.5} as an example, we have

1
Jyer, - T dy [0 oo2dy 39,05 3 (1- 1)
fyeEy f(y)dy f01.5 dey y2‘?1420.5 1- i
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1.4 Expectations of functions

What if you need to calculate an expectation of some function u(y)? You do the very same thing: you weigh
various values of u(y) by the probabilities of the respective realizations of y. The general formula is

Jyen, ) - f(y)]ldy

Blu(y)|By] = 24—
yek,

(Can you see how it simplifies in case of an uncondional expectation? Can you see how it will look like for
a discrete distribution?)

To summarize all lessons of this sections, consider the following slightly elaborate example. Suppose that
you can pay $0.5 to participate in a lottery which pays w = y? if y > 1/2 and pays w = 0 otherwise (y here
has the same distribution as above). How do you compute the average payoff of such a lottery?

]E[w]P(yZ;)~E{y2|y2;}+P<y<;>‘ﬂ£[0|y<;]
= [ sy S rwla [ oty B 010l
3 0

1 I
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= / [V fy)] dy+0= / 2y°dy
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= =y = — — | = =
27 |25 2 16 32
So if you are risk-neutral and, thus, evaluate lotteries by their expected payoff, then lottery w is not worth
taking, because its average payoff is %, which is less than the price % = % required to buy it.

2 Leibniz rule

The Leibniz rule tells you how to take the derivative of a function that is an integral. We will only use
one very special case of it. Therefore, I show you this special case and give the full rule only for sake of
completeness below.
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What we wat to look at are functions like

The way you should think about this is that the integral of a function is the area below the graph of this
function. So, draw some function g now. Seriously, do it! The integral fO‘T g(z)dz is the area between the
axis and the function g(z) from z = 0 to some z = = (take some x > 0 and shade this area in the graph
you just drew). The derivative of f(x) with respect to x answers to the following question: “How does the
size of the shaded area change if you make x a bit bigger?” From the graph, it should be clear that if you
increase x by dx, the area gets approximately g(x) - dz bigger. This means that f’'(z) = g(x) (increasing x
by one unit increases f by g(z)).

Similar intuition implies that the derivative of

is ' (z) = —g(z).

The full Leibniz rule (that we will not really use) says that the derivative of

b(x)

f(x) = / o2
b(x)

is f'(x) = —d'(x)g(z, a(z)) + V' (x)g(z, b(x)) +/ 9o (, 2)dz.

a(z)

3 Fundamental Theorem of Calculus

This theorem states what you almost surely know, at least informally: “integration and taking derivatives
are opposite operations”. The theorem consists of two parts, relating to the two possible directions of the
“round trip”: part 1 is about the derivative of the integral, while part 2 is about the integral of a derivativeﬂ

Theorem 1 (Fundamental Theorem of Calculus).

1. Let f : [a,b] = R be bounded and continuous almost everywhere. For any x € [a,b], define F(x) as

Fla) = Fla) + [ " )y, (4)

Then F is continuous on [a,b], and its derivative F'(x) exists and equals f(x) at all continuity points
of f.

2. Let F : [a,b] — R be continuously differentiable. For any x € [a,b], define f(z) as f(z) = F'(x). Then
holds.

2See also: https://www.smbc-comics.com/comic/fundamental-2k
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4 Integration by parts

Integration is difficult, mkay?ﬂ Integration by parts is one trick that sometimes helps make it a little easier.

5
/ re’dx,
4

finding the “antiderivative” of xe” is not a trivial task. But you can use integration by parts to go around

For example, if you are asked to compute

it. The rule itself looks as

b b
/ u(2)v' (z)de = [u(z)v(z)]|% — / o (z)v(z)dx, (5)

where v and v are some functions of x.

Let us try to apply it to our problem. Set u(x) = 2 and v'(z) = e”, then v/(z) = 1 and v(z) = €® (since

d%em = e%). Plugging all of these in, we get that

5 5
/ xe®dr = [xexﬂi - / e’dx
4 4

5
= 5e° — 4e* — €”|}

= 5e® — 4e* — (65 — 64) = 4e® — 3¢t

How did we know how to split xe® into u(z) and v'(x)? Trial and error really. (What happens if you try to
do it the other way?)

For another example, see if you can use integration by parts to calculate f; 22 log(w)dw.

4.1 Double integral example

Integration by parts can sometimes transform double integrals to simple integrals. For example, consider

the following integral:
1 x
[ (2o [ st as
0 a

where f(y) is some arbitrary function. Here we can set u(z) = [ f(y)dy and v'(x) = 2z, which would yield
u'(z) = f(x) (remember Leibniz rule?) and v(x) = x2. Plugging all of these into the integration by parts

/01 <2x /a”” f(y)dy> dz = [xz /a”” f(y)dy} ;O - /01 F(z)22da

LU@@AV@ﬁm

expression yields

which looks much nicer! Note also that both z and y in the final expression are just integration variables
which we can relabel freely. For example, we can relabel y to = so that the final answer is

/a1 f(z)dz — /01 f(z)z?dz.

3https://xkcd.com/2117/
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4.2 Why does integration by parts work?

If integration by parts looks arbitrary and mysterious, it is only because it disguised itself well. Truth is you
know it well, since it is nothing more than product differentiation rule:

(w(z)v(2))" = v/ (z)v(z) + u(z)v'(z)

To see the connection, integrate both sides of this expression from a to b:

/ab (u(z)v(z)) dz = /ab u' (z)v(x)dz + /abU(x)v’(g:)d;p,

Here we already split the right-hand side integral into two. Notice that on the left-hand side we have an
integral of the derivative — the two operations which “cancel each other out” (see the fundamental theorem
of calculus). Meaning that what we have on the LHS is exactly

b
/(WWMWM=M@MM%

So by rearranging the terms a bit we get precisely the integration by parts rule (5)):

b

b
@l = [ W@t [ u@e @

a
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