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Dynamic Problems

Models considered so far were static: one report, one outcome.

Although we hinted towards dynamic incentives when discussing interim vs ex post IC/IR constraints.

There are many dynamic problems in the real world:

Dynamic pricing when buyers’ tastes evolve (e.g. experience goods) or buyers come and go over time;

Procurement from firms with changing costs;

Design of tax and social security systems;

Dynamic labor contracts

How to develop dynamic mechanisms? Will see today.

This lecture mostly follows Bergemann and Välimäki [2019].
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What defines a dynamic problem? (1)

Why can a dynamic problem not be seen as a sequence of independent static problems?

Because there can be linkages across periods: (which ruin the independence)

1 Information – future info evolves from (so depends on) past info and possibly past allocations.

2 Preferences – usually evolve gradually. For our purposes, can see this as persistence in nformation.

3 Allocations – set of feasible allocations today may depend on past outcomes (example: sale of fixed

number of items over many periods).

The same linkages mean that if we try to see the problem as a huge static problem (with

same player in different periods seen as different players), the correlations in players’ info

and the set of feasible allocations will look weird and complicated.
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Dynamic Model

Periods t ∈ {0, 1, ...,T}; terminal time T ≤ ∞; all players (incl. designer) have common

discount factor δ.

Players i ∈ {1, 2, ...,N} have evolving types θi,t ∈ Θi , indep. across i .

Common prior θi,0 ∼ Fi,0; types are Markov processes:

θi,t+1 ∼ Fi,t(θi,t+1|θi,t , kt).

Every period: allocation kt ∈ Kt and payments pt ∈ RN .

Set of feasible allocations evolves as Kt+1 = g(Kt , kt).

Players’ utilities: ui ((kt , pt), θt) = vi (kt , θi,t)− pi,t .
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Evolving Types

Possible interpretations of evolving types:

Exogenous evolution (θt+1 ⊥ k);

Example: procuring goods over time from a firm with stochastically evolving costs

θi,t+1 = γθi,t + εi,t+1.

Endogenous evolution (depending on kt);

Example: worker assigned to training by kt will improve their future productivity θi,t+1.

Random arrival;

Players can arrive at the mechanism at random times.

Can model that by setting θi,t = ∅ whenever i is not in the market/mechanism.
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Dynamic Model: Assumptions

To fix ideas, assume the following for this class:

The designer can commit to the whole future mechanism at t = 0.

Contracts are binding – we ignore per-period IR constraints (except maybe IR at t = 0).

Justification: in quasilinear model, can ask players to put collateral at t = 0, to be repaid at a later

date – this would eliminate incentives to quit mechanism after t = 0.

All past reports and allocations are publicly observed.

Player i at time t observes their type θi,t but not future types.
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Direct Mechanisms

As usual, we have the revelation principle, though there are caveats [Sugaya and Wolitzky,

2021].

So can focus on mechanisms which ask players to report their types every period.

Reporting strategies given by ρi = {ri,t}Tt=0, where ri,t : Θi ×Ht → Θi and Ht is the set of

public histories ht = {ks , (r1,s , ..., rN,s)}s<t .

A dynamic direct mechanism is (κ, π) = {kt , pt}Tt=0, where kt : Θ× Ht → Kt and

pt : Θ× Ht → RN .
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Dynamic Implementation

Looking for a truthful equilibrium in a direct mechanism.

“Equilibrium” is a sketchy term in dynamic incomplete-info games.

There is at least a dozen different equilibrium concepts and refinements in use.

Main concern in general: off-equilibrium-path beliefs. What should a player believe after observing

an event they considered impossible? Different answers can strongly affect the predicted outcome.

Not a big problem in mechdesign – players do not observe any actions until it’s too late to act.

Look for Perfect Bayesian Equilibria.

Each player chooses report to maximize expected util, expecting others to report truthfully.

Beliefs are updated using Bayes’ rule whenever possible (i.e., on equilibrium path).

In general in PBE: We can assume anything we want about off-path beliefs to sustain eqm. In our

problem: won’t need to.
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Efficient Allocation

Suppose we want to implement the efficient allocation κ∗.

But what is κ∗ in a dynamic problem?

κ∗ ∈ arg max
{kt}T

t=0

E

{
T∑

t=0

δt
N∑

i=0

vi (kt , θi,t)

}

Must optimize over the whole path {kt}Tt=0 rather than period-by-period.

Today’s allocation kt may affect tomorrow’s types θt+1 and set of alternatives Kt+1.

Also remember that kt : Θ× Ht → Kt is a highly-dimensional object in itself.

So simply finding κ∗ is in general a difficult optimal control problem.

Remark: ex post efficiency is unattainable in dynamics – kt must be chosen before θt+s

learned. Interim efficiency is the best we can hope for.
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Efficient Implementation

Ok, suppose we found κ∗, what next?

In static setting we used VCG aka the pivot mechanism: each player had to pay the

externality they imposed on everyone else:

pi (θ) = −
∑

j ̸=i

vj (k
∗(θ), θj) +

∑

j ̸=i

vj
(
k∗
−i (θ−i ), θj

)

The idea translates almost verbatim to the dynamics.

Problem: the externality that i imposes on others via report θi,t may manifest in other periods – not

necessarily at t.

Enter dynamic pivot mechanism! [Bergemann and Välimäki, 2010]
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Dynamic Pivot Mechanism

Flow social surplus wt(kt , θt) ≡
N∑

i=1

vi (kt , θi,t).

Welfare Wt(θt ,Kt) ≡ max
kt∈Kt

{wt(kt , θt) + δEWt+1(θt+1,Kt+1)} .

i ’s marginal contribution Mi,t(θt ,Kt) ≡ Wt(θt ,Kt)−W−i,t(θt ,Kt)

can be written recursively as Mi,t(θt ,Kt) = mi,t(θt ,Kt) + δEMi,t+1(θt+1,Kt+1).

Payments p∗i,t ≡ vi (k
∗
t , θi,t)−mi,t(θt ,Kt).

The dynamic pivot mechanism is given by κ = κ∗ and ρ = {p∗i,t}Tt=0.

Note that i must pay his flow marginal contribution rather than simply w(k∗)− w(k∗
−i ).

This is because i by influencing today’s allocation kt , i will also affect future types of

other players and the set of available allocations – have to account for that.
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Dynamic Revenue Maximization

Second canonical question: what is the optimal mechanism?

Main example: dynamic pricing (there’s huge literature, more or less related to DMD).

With binding contracts: mobile service, loans, insurance

Question

There is one buyer with time-changing valuation θt ∈ Θ ⊂ R for the item.

What is the seller-optimal mechanism for {repeated purchases, one-time purchase}?

Again, insights from static models carry over after reasonable modifications.

Now we want to distinguish between info that the buyer has before signing up for a mechanism

and which they acquire after signing the contract.
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Flashback: Static Model

In the static optimal mechanism, seller’s expected revenue was

ER = Eθ

[
v(k(θ), θ)− 1− F (θ)

ϕ(θ)

∂v(k(θ), θ)

∂θ

]

(
we derived this for v(k, θ) = kθ: ER = Eθ

[
k(θ)VS static(θ)

])

Had to trade off max social surplus v(k, θ) (i.e., efficiency) against information rents.

Had to leave some money to the buyer to incentivize truthful reporting.
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Static Model – Posterior Information

Example

Consider static optimal mechanism setting (1 period, 1 item, 1 buyer),

except: buyer only learns θ after signing up for the mechanism.

What is the optimal contract?
Designer’s problem is

max
(k,p)

{Eθp(θ)}

s.t. (IC) : v(k(θ), θ)− p(θ) ≥ v(k(θ), θ̂)− p(θ̂) ∀θ, θ̂,
(eaIR) : Eθ [v(k, θ)− p] .

Only real difference from Myerson: ex ante IR instead of interim IR.

Solution: choose efficient k∗ and charge p(θ) ≡ p = Eθ [v(k
∗(θ), θ)]

Perfect information extraction; no information rents to the buyer; full efficiency.

Remark: this solution would not work with N > 1 bidders competing for 1 item (why?)
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Dynamics and Information (i)

Statement (Future Extraction)

Designer can extract all of buyer’s future info at no cost.

Same idea: “sell” the item (subscription) to the buyer at ex ante expected value.
Then only buyer’s initial info θ0 matters for IC:

in future periods use buyer-optimal allocation rule ⇒ buyer’s IC is satisfied without any extra

transfers.

(FE) sounds reasonable, but it is not a formal theorem.

The literature is currently at the stage “let’s hope that (FE) holds”.
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Dynamics and Information (ii)

Statement (Future Extraction)

Designer can extract all of buyer’s future info at no cost.

The literature is currently at the stage “let’s hope that (FE) holds”.
In particular, the protocol is:

1 Solve the dynamic problem as if all future info is public.

2 Get some allocation and transfers.

3 Check whether the resulting mechanism satisfies dynamic IC (at t > 0).

4 Pray that it does.

Pavan, Segal, and Toikka [2014] provide some sufficient conditions for this to work, but

these are considered by some as too restrictive.

We today take the “pray that (FE) holds” approach and only worry about extracting the

buyer’s initial type θ0 – we are back to the static problem.
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Caveat

Statement (Future Extraction)

Designer can extract all of buyer’s future info at no cost.

Caveat

“Ignore future information” is not the same as “ignore future types”!

Type θ0 is (in general) correlated with future θt ,

so θ0 contains some information about θt ,

so we cannot work as if know θt for t ≥ 1.

20



Caveat

Statement (Future Extraction)

Designer can extract all of buyer’s future info at no cost.

Caveat

“Ignore future information” is not the same as “ignore future types”!

Solution: separate types from information through orthogonalization.
Suppose θt+1 ∼ Ft+1(θt+1|θt , kt).
Let εt+1 ≡ Ft+1(θt+1|θt , kt). Then εt+1 ∼ U[0, 1] and independent of θt .

In a direct mechanism, ask player to report θ0 in period 0 and εt in period t, then recover θt+1 from

these reports.
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Virtual Surplus

Optimal allocation κ maximizes virtual surplus = real surplus – information rents.

This pins down optimal mechanism (κ, π + C) up to the constant C .

C is determined from IR at t = 0 – skip the step of finding it.

In static model, virtual surplus is (note inconsistency in how VS is defined here vs in past

lectures!)

VS(k , θ) = v(k(θ), θ)− 1− F (θ)

ϕ(θ)

∂v(k(θ), θ)

∂θ

Now in dynamics, real surplus is

S(κ, θ) ≡
∑

t≥0

δtv(kt(θt), θt).

Calculating VS(κ, θ) = S(κ, θ)− 1−F0(θ0)
ϕ0(θ0)

∂S(κ,θ)
∂θ0

requires understanding how S depends on

θ0 (the only source of inforents for the buyer).
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Virtual Surplus

∂S(κ, θ)

∂θ0
=

∑

t≥0

δt
∂v(kt(θt), θt)

∂θt

∂θt
∂θ0

Let It(θt |θt−1, kt−1) ≡ ∂θt
∂θ0

be impulse response function, where θt ≡ (θ0, θ1, ..., θt).

It shows the effect of θ0 on θt given fixed realization of uncertainty {εs}s≤t .

Can compute that

It(θt |θt−1, kt−1) = −
t∏

s=1

∂Fs (θs |θs−1,ks−1)
∂θs−1

ϕs(θs |θs−1, ks−1)
.
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Virtual Surplus

Then

∂S(κ, θ)

∂θ0
=

∑

t≥0

δt
∂v(kt(θt), θt)

∂θt

∂θt
∂θ0

=
∑

t≥0

δt It(θt |θt−1, kt−1)
∂v(kt(θt), θt)

∂θt

so the whole virtual surplus as a function of the whole θ = (θ1, θ2, ...) is

VS(κ, θ) = S(κ, θ)− 1− F0(θ0)

ϕ0(θ0)

∂S(κ, θ)

∂θ0

= S(κ, θ)− 1− F0(θ0)

ϕ0(θ0)

∑

t≥0

δt It
∂vt
∂θt

(again, definition slightly different than in static opt.mech.; this one is more general)
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Optimal Mechanism

To find optimal allocation, take expectation of VS(κ, θ) over {εt} to get VS(κ, θ0) and

maximize over κ. (Still a difficult problem, for the same reasons as for efficient κ∗.)

max
κ

Eε


S(κ, θ)− 1− F0(θ0)

ϕ0(θ0)

∑

t≥0

δt It
∂vt
∂θt

| θ0




Then find expected (as of t = 0) payments from the envelope representation of the

buyer’s expected utility:

dUb,0(θ0)

dθ0
= E

[
T∑

t=0

δt It(θt |θt−1, kt−1)
∂v(kt , θt)

∂θt
| θ0

]
.

Note that this will pin down the “expected-at-time-0” payments Eε[
∑

t δ
tpt(θ

t)|θ0].
These payments can be redistributed across periods and histories since both seller and
buyer are risk-neutral.

Will usually have to do this redistribution to ensure IC at t > 0. No good recipe here.
25

Dynamic Revenue Maximization: Conclusions

max
κ

Eε


S(κ, θ)− 1− F0(θ0)

ϕ0(θ0)

∑

t≥0

δt It
∂vt
∂θt

| θ0




Insight: if |It | decreasing with t, i.e., θ0 contains little information about θt for large t

then optimal kt converges to the efficient k∗
t .

Distortions vanish over time.

See Bergemann and Välimäki (2019, ch.5) for applications.
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What now?

Will look at dynamic mechanisms within some special settings.

Beyond the models we looked at, not within.

Will go very quickly: no solving models, just setup and results.

Will see a common theme emerging.
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Dynamic Insurance [Thomas and Worrall, 1990]

One risk-neutral lender (designer), one risk-averse borrower (agent), common discount

factor β.

Time t = 0, 1, ....

Agent receives random exogenous income θt ∼ i .i .d .F [θ, θ̄].

Concave utility u(c), so would like to insure.

Special assumption: u(c) = −∞, where c > 0 is subsistence level.

Principal designs insurance contract.

Goal: minimize cost of providing (ex ante expected) util V0 to agent.

Agent reports θt in every period, mechanism pays him bt(θt , θt−1, ...)

Perfect commitment on both sides – no IR.

But must incentivize truthful reporting of income θt – IC.
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Agent’s incentives

At all t, agent maximizes lifetime utility

Vt ≡
∞∑

s=t

βsu(θs + bs).

Let g t = (θ̂0, ..., θ̂t) be history of past reports.

Then agent’s IC at g t−1 is:

u(θt + bt(g
t−1, θt)) + βVt+1(g

t−1, θt) ≥
≥ u(θt + bt(g

t−1, θ̂t)) + βVt+1(g
t−1, θ̂t).

for all θt , θ̂t .
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Relation to standard model

Note that there are no allocations, only money across periods.

One way to relate to our standard quasilinear model:

usual model this model

allocation k today’s transfer bt
transfer t continuation util Vt+1

The main intertemporal linkage comes from the need to deliver on promised Vt+1.
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Efficient contract

Moving on to the results.

In the optimal contract, at every g t−1:

bt is decreasing in θ̂t (insurance);

Vt+1 is increasing in θ̂t (IC).

In particular, bt(θ) > 0 > bt(θ); Vt+1(θ) < Vt < Vt+1(θ).

First-best (cheapest way to deliver util Vt) would be to provide full insurance, but have to

trade efficiency against info rents, so incomplete insurance in the optimum. (Standard

opt.mech logic)
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Immiseration

Theorem (Immiseration)

lim
t→∞

Vt
a.s.
= −∞

In the limit, consumption and utility converge to c̄ and −∞ resp.

Neat mathematical result, but I haven’t found any good intuitive explanations of where it

comes from and after some thorough thinking cannot offer any correct intuition of my own.

Popular paper, has quite some citations and influential follow-up papers.
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Dynamic Allocation without Money [Guo and Hörner, 2018]

One principal, one agent.

Time t = 0, 1, ...

In each period: agent’s type v ∈ {L,H}, principal chooses a ∈ {0, 1}. Utilities (P,A):

(uP , uA) v = H v = L

a = 0 (0, 0) (0, 0)

a = 1 (H − c ,H) (L− c , L)

with H > c > L > 0.

Idea: principal can provide funding for agent’s project, it is costly for the principal, but

agent always wants more funding.

Persistence: P(vt+1 = vt) = ρ ≥ 1/2.

Principal’s goal: max own discounted util subject to IC.
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Connection

Like Thomas and Worrall, but there had only transfers, no allocations. Here only

allocations, no transfers.

Same idea behind IC: induce truthtelling today by varying future utility promises.

usual model this model

allocation k today’s allocation at
transfer t continuation util Vt+1

Opt. mech: if agent does not require funding today, allow to claim more funding in the

future. For v = H agent, funding today is more valuable than in the future (since

Evt+s < H), for v = L future funding is more valuable than today ⇒ IC.

37

Polatization

Let Ut ≡ (1− δ)E
[∑

s≥t δ
s−tatvt

]
denote agent’s util.

Note Ut ∈
[
0, Ū

]
for some Ū.

Theorem (Polarisation)

Under the optimal mechanism, Ut → {0, Ū} as t → ∞.

Ut is (not really, but similar for our purposes to) a martingale bounded on both sides –

both boundaries are absorbing, and Ut hits one of them sooner or later.
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Power Dynamics in Organizations [Li et al., 2017]

One principal, one agent.

Time t = 0, 1, ...

In each period: principal chooses a ∈ {0, 1, 2, 3}. Utilities (P,A):

principal agent

a = 0 (default) 0 0

a = 1 (agent-preferred) b B

a = 2 (principal-preferred) B b

a = 3 (nuke humanity) −∞ −∞

with B > b > 0.

Principal-preferred project only available at any t with probability p. Only the agent knows

whether a = 2 is available at a given t. Agent suggests a project to principal at every t.

Principal’s goal: maximize expected util subject to agent’s IC.

Principal cannot commit to future contracts (so this is just a repeated game).
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Possible Modes

Centralization

Principal always chooses the default a = 0.

Cooperative Empowerment

Agent suggests and principal implements principal-preferred a = 2 when available, agent-preferred

a = 1 otherwise.

The “best” outcome.

Restricted Empowerment

Agent suggests and principal implements principal-preferred a = 2 when available, default a = 0

otherwise.

Unrestricted Empowerment

Agent suggests and principal implements agent-preferred a = 1 always.

Total Annihilation

Principal implements a = 3; only used as off-path threat.
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Polatization

Theorem

In the optimal relational contract, the principal chooses cooperative empowerment for the first

τ periods, where τ is random and finite with probability one.

For t > τ , the relationship results in unrestricted empowerment, restricted empowerment, or

centralization forever

The relationship inevitably slips out of the cooperative mode into one of the uncooperative
ones:

either the agent gets unlimited power,

or the principal loses trust in him.

Although convergence to restricted empowerment (semi-cooperative outcome) is possible...
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Conclusion

Lessons from the three papers:

relying on promises of future utility for incentive provision leads to huge asymptotic inefficiencies.

Drastically different from the quasilinear setting we considered,

where inefficiencies vanished over time...
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