Kgbenhavns Mechanism Design Fall 2024
Universitet Midterm Prof. Egor Starkov

Midterm assignment

Be prepared that the problems below can be more messy and/or difficult than the problem sets. Group
submissions are allowed and encouraged (no more than 5 people per group). If something in the assignment
is ambiguous or you think something is incorrect, email me.

Problem 1: (Malevolent) Judicial design

A suspect is in custody, accused of murder. If he goes to trial he will either be convicted or acquitted. If he
is convicted he will be sent to prison for life giving him a payoff of —1. If he is acquitted he goes free and
has a payoff of 0. The district attorney can offer plea bargains: allowing the defendant to plead guilty in
return for a lighter sentence. In particular, for any r € (0,1), the DA can offer a reduced sentence which, if
accepted, would give the defendant a payoff of —r.

The defendant is privately informed about his chances for acquittal at trial: 6 € [0,1] is the defendant’s
privately known probability of acquittal. If the defendant does not enter into a plea bargain with the DA he
will go to trial and be convicted with probability 1 — 6.

Consider the mechanism design problem where the DA is the principal and the defendant is the agent. A
social choice function is a mapping f : [0,1] — {trial} U (0,1) where f(#) = trial means that type 6 will go
to trial and f(6) = r € (0,1) means that type 6 accepts a plea bargain giving him a sentence with payoff
—r. DA thinks 0 has full support on [0, 1].

1. Write down the inequalities that characterize whether some given social choice function f is incentive-
compatible for the defendant.

2. What is the set of all incentive-compatible social choice functions? You can proceed in the following
steps:

e Show that in any IC f at most one plea bargain r is available.

e Show that f must be of cutoff type, with the suspect taking the plea if § < # and going to court
otherwise.

e Find the value of r that makes the cutoff s.c.f. f incentive compatible given some cutoff type 6.
e Combine all of the above to characterize the set of implementable f.

Suppose that the DA wants to maximize the expected length of the defendant’s sentence, i.e. to minimize
the defendant’s expected payoff. (So the DA gets a payoff of 1 for a life sentence and a payoff of r for a
reduced sentence which would give the defendant a payoff of —r.)

3. Among the incentive-compatible mechanisms you identified, what is the optimal mechanism for the
DA?

4. How does your answer change if going to trial imposes additional cost ¢ € (0,1) on the DA (but not
on the defendant) relative to agreeing on a plea bargain?

Solution

1. By going to trial a defendant of type 6 receives (expected) utility of —(1 — ), while from accepting
a plea bargain his utility is —r. Fix some s.c.f. f(f). Let ©, be the set of types who are offered
a plea bargain f(0) = r(6), and ©; be the set of types who are meant to go to trial: f(6) = trial
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(0, U0, =[0,1]). Then the IC constraints are given by:

forall €©,: —r(@)>—r(0)forald €0,
and — () > —(1 —6);

forall0 €©;: —(1—0)>—r(0) for all 0 € ©,,.

2. We will characterize the set of IC social choice functions by a series of claims.
claim 1 f(e) has at most one value on the real line.

Proof: if f(61) < f(62) 01,05 € [0,1] then a defendant of type 03 gains higher utility by declaring
01 (as —f(01) > —f(02). This implies the mechanism is not IC for 6.
r ifg<6

_ (value at @ is not unique)

claim 2 f(e) has a cutoff at some 8. i.e. f(f) =
f(e) f(0) {T >0

Proof: assume ¢’ > 6, f(0) =T, f(¢') = r. By IC for § we know that —r < —(1 — 6). However as
—(1—6") > —(1 — 0) this implies that —(1 — ') > —r and we don’t have IC for ¢'.

claim 3 u(—f(0),0) > —(1 —6)
This follows immediately from IC for type 6.

claim4 r=1-10

Proof: 7 < 1— 6 follows directly from the last claim, while r > 1 — 6 follows from IC of type 6 + €.
If type @ were strictly better of by accepting the plea bargain, by continuity and monotonicity
of benefit of trial, type 4 ¢ would also strictly prefer the plea bargain contradicting IC for that

type.

These four claims imply that for any (r,6) s.t. 7 = 1 — @ the social choice function

r ifd<@
0) = _
1) {T if >0

is incentive compatible.

3. The implementable social choice functions must look as follows, for some 6 € [0,1] (see the original

problem):
roifo<@
0) = _,
79) {T it > 8

where plea bargain r = 1 — 6 is offered, and the defendant can choose between that and going to trial.
The DA gets r from a plea deal and 1 — 0 if the defendant goes to trial, so the DA’s expected payoff
from any such f(0) is:
_ _ ! _ o 1—20+ 62 _
O)-1-0)+ [ (1-0—-c)d®(0)=01—-0)+ ——F——— —c(1-0)
a
(1)

We could maximize over @ directly. However, for ¢ = 0 there is a more direct solution. Any
defendant who takes the the plea bargain gets a lower sentence from the plea bargain than what they
would have gotten from trial. Thus, it is clearly optimal for the DA not to offer any plea bargains
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4.

(except perhaps to § = 0, which will accept a plea bargain of 1), i.e., setting 6 = 0 is optimal.

When going to trial imposes cost ¢ > 0 on the DA, maximizing w.r.t. 6 yields the optimal threshold
0 = c. So in the optimal mechanism, a plea deal 7 = 1 — c is offered, sufficiently innocent types 6 € [0, c]
take it, and types 6 € (¢, 1] prefer to go to trial.

Problem 2: Piece of cake

Young siblings Annie and Billy are fighting over a cake of size 1. Their respective valuations are given
by 84 > 0 and 6 > 0 per unit of cake respectively and are their private information. Both kids act in
pure self-interest. Their Dad decides to employ the VCG mechanism to resolve the ﬁghtE However, he
also has preference for splitting the cake equally among the two kids: his (real) utility function is given by
vo(k) = —a(ka — kp)?, where k; is the share of the cake allocated to kid i = A, B.

1.

Write down the social welfare function that is maximized by the efficient allocation k*(6). Explain the
meaning of the parameter «. Derive k*(6).

Derive the VCG transfers and describe the whole mechanism. (If you cannot derive the mechanism for
the general case, assume 6; € [0,1], @ > 1/4, and derive the mechanism for this special case.)

3. Since the kids are unlikely to have any money, what instrument can Dad use as transfers?
Solution
1. The kids’ real utilities are standard Euclidean, v;(k, 0) = 0;k;, so the social welfare is given by

wk,0)= > vi(k,0) = —a(ka — kp)> +0aka + Opks.
i€{0,A,B}

Since this is effectively Dad’s objective function as a designer (as opposed to vg), o describes the weight
he puts on equity relative to the kids’ utilities. The efficient allocation that maximizes w(k, #) subject to
the constraint ka+kp < 1is given by k*(0) = (k% (0), k};(0)) with £% (6) = min {max {5 + %, 0},1}
and k5 (0) =1 — k% (0).

First we need to calculate the efficient-excluding-i allocations for i = A, B:

k7H(6) = arg max {—a(k; — k;)* + 0;k;}

= min < max l—ﬁ,o ;10
2 8o«

and k‘j_i(ﬁ) =1 —k;“(#). Note that in this calculation, we only ignore i’s utility, but k; still enters
Dad’s utility, which is included and favors equity. Hence, if a is large enough, &k, ¢ will be positive.

1Mom, on the other hand, prefers a Vickrey-Clarke-Groves-Weinersmith mechanism: https://www.smbc-comics.com/
comic/mechanism.
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Then applying the standard expression for the VCG transfers:

tVCG Z’UJ 91,6_1 _j + Z'Uj —i s V) )

J#i J#i
= (~a (50) - K;(0)* +0;5;(0)) + (—a (k7(0) — K7(0)" + 0,857(0))

—(—a 0) (—a+6;) if 6; > 4o + 6;;

—(—a(Zl)2 1 gL + YTl 4 (—a + 6;) if 0; € [max{4a, —4a + 0;}, 4o + 0;);
=4 —(—a)+ (—a+6,) if 0; € [da, —da+ 0,];

(B2 0,3 + Sl p (a2 0, + L)) it 6 € [~4a + 6;,4al;

—(—a) + (—a(2)2 +0;(L + L)) if 6, < min{da, —4a + 6;};

0 if 0; > 4o+ 0;;

2
a[(i’;)z (#-1) ] if 0, € [max{4a, —da +0,}, 4a + 0]

— 1Y if 0; € [da, —4a + 6,];
o (L) 2 if 0; € [—4a + 6;, 4a];
o (g +1) if 0; < min{4a, —4a + 0,}.

Combining this with the allocation rule £*(#), we can conclude that the VCG mechanism looks as
given in Table [I] and Figure [I Depending on the parameters of the problem, some of the regions may
be empty. E.g., if 6; € [0,1] then for « € [1/8,1/4] regions R2 and R5 disappear, whereas for o > 1/4
only region R6 remains.

I | kO k) () 155 (0) |
6 € R1 0 1 0 (92 +1)°
6 € R2 0 1 0 04
beR3 %+% bl af(f) - (- o ()
beRd| 4+ lagle J-fagle a(fa) - (-1 a|(B) -(B-V
6 € R5 1 0 05 0
0 R6 | 5+ tagre 5 tage a(f) o ()
0eRT | 5+ o CfB 1 M a(f)’ af(f2) - (2-1
6 € B8 1 0 (e +1) 0

Table 1: The VCG mechanism for cake sharing, see Figure [I] for type regions.

3. Within the monetary realm, Dad can withhold kids’ future allowance, which should be similar to
requiring a payment. Alternatively, methods of payment can include cutting down on the kids’ screen
time (on a smartphone, tv, Nintendo Switch™, etc), bedtime, curfew time, or similar. Symmetrically,
transfers to the kids can be implemented by increasing their respective time allowance.
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Figure 1: regions of types for the cake problem.

Problem 3: Used Car Auction

Monica is running a used car auction. This week she has two cars for sale: a ’85 Ford Mustang and an
'87 Pontiac Trans Am, hereinafter denoted as ¢ € {F, P}. The auction has attracted N interested bidders
i € {1,..., N}, whose valuations are commonly believed to be ;. ~ 1.i.d.U[0,1]. In particular, for every
i, 0; r is independent of 6; p, since the two cars are quite different and have different age-related issues.
However, once a bidder wins one car, they are not interested in bidding for another. Monica’s value for
retaining either car is 6 € [0, 1] and 20 if she retains both. All players’ preferences are Euclidean. Your goal
is to help Monica design the auction in such a way as to generate the most revenue.

1. Suppose the cars are auctioned sequentially over two periods ¢t = 1,2, and at ¢t = 2 there are only one
car ¢ = P and N — 1 bidders left. Derive the optimal auction (for ¢ = 2) that maximizes Monica’s
expected revenue. Make sure to describe both the allocation and the payment rules.

2. Calculate buyer i’s ex ante expected utility from participating in the auction you derived.

3. Now move on to ¢ = 1 and the auction for ¢ = F. Suppose that at this point the buyers do not yet
know their valuations 6, p for the second car (since it has not yet been presented and they did not
have a chance to inspect it). Derive the optimal auction for ¢ = F' in ¢ = 1, assuming that in ¢ = 2 the
auction for ¢ = P will be run according to the rules you derived in part 1.

4. How do you think the expected revenue Rp from selling ¢ = F' in t = 1 compares with the expected
revenue from selling ¢ = P in ¢t = 27 (A convincing intuitive argument suffices.) What implications do
your conclusions have for auction design? (I.e., is it optimal to sell the two items sequentially or could
a different format yield better results?)
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Solution

1. Following the slides for the optimal auctions, we get that Monica’s expected profit is given by

N-1
EUp2 = Eg [Z ti2(0) — kme‘]

i=1

N-1
=Eq Z (ki2(0)V Si2(0) — U¢,2(079¢,P))] ;
i=1
= 1 —,(6;p)
here VS;2(0)=60;p —0 — ————=
where 2(0) o ¢i(0i,p)
=20; p—(1+ 5)

Note that it is convenient to incorporate # directly in the objective function as a loss if a trade takes
place. If we do this, we can include it in V'S as a part of the real surplus generated from trade, 6; p — 0.

At t = 2, bidders’ outside option is zero, hence the minimal U; 2(0, 8; p) we can set is zero for all 4,6, p.
Further, maximizing EUjs 2 over allocation rules k that are feasible (Zf\:ll kia <1), we get

0,2

1 if6;p>0;0,
* (9)_ 1 z,P._ ,2
0 otherwise,

where ; 5 = max {lize, max;; {0}, p}} is the minimal winning report for 7 given others’ reports. We
can see that this allocation rule is monotone (it needs to be increasing in 6; p in this problem) for all
0_; p, hence it is implementable in dominant strategies. To find the transfers that support it, use the

ERP for the bidders’ utility:

0;.p
Ui2(0i,p,0-i.p) = 6; pki2(0) —t; 2(0) = U; 2(0,0_; p) +/ ki 2(0)do; p
0

= max{&i,p - éi’g, O}

0;0 if0;p >0

0 otherwise.

= ti’z(e) = {

It is trivial to verify that the resulting mechanism is IR for all ¢,6; p,0_; p.

We conclude that the optimal auction at t = 2 is a second-price auction with reserve price equal to
140
7

2. We have calculated that U; 2(0) = max{6; p — éi,g, 0}, hence

1,1
EoU; 2(0;,0-;) = / / max{6; p — 9Ai727O}d¢i(9i7p)d§>i(éi72)
o Jo
1] 1 R o
= / [/ (0i,p — 9i,2)d9i,P] d®;(0;2)
0o |Jb;o
_ / FlA=0ip)°
-/ 5

d®;(0;2),

s
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where &;(-) is the cdf of 6, o:

o 7 A
®,;(0; 2) =P max L,maX{GJ ptr <02
2 g#E T ’

_ lféi,2<%‘§ - 0 lfé7;<1%_

P{maxj#{@jf} < éz’,Z} if G0 > 150|082 ifh > e

(recall that max;;{f;p} is a max of N — 2 elements, since it is assumed there is a total of N —1
bidders at this stage). So we have (for 6;» > 15%) that d®;(0;2) = di(0i2)df; 2 = (N — 2)07,3db; »,

and at éi,g = 1%9, @i(ﬂl,g) jumps up from zero to #. Plugging this in, we get
6, 2:17(;

((1 —51,2)2> <1'2F§>N_2 _oN-2

() (5 e ®

It can be verified (analytically or graphically) that this function is decreasing in N.

EoU; 2(8i,p,0-; p)

1
2

1 _h.\2 R R
+ / ,%(N—Q)eﬁ;?’dam

3. The difference between the two periods is that at ¢ = 1, the bidders’ outside option from not partic-
ipating in the auction or not winning the item is not zero, since they have an option to participate
at t = 2, which yields positive expected utility. At the same time, if a bidder wins F' at ¢t = 1, they
forego this value (since, as assumed in the problem, they have no value for a second car, and will not
participate at t = 2). Letting o denote the probability that Ford is sold at ¢ = 1 to one of the other
N — 1 bidders, implies the outside option is given by

g_l-a (1+0 N+1+2a—1 1+0\Y a (1490 N1+ l-a o
TN+1\ 2 N 2 N-1\ 2 (N+1)N  N(N-1)
Bidder 4’s utility function at ¢ = 1 is then given by u;1(x,0) = 0; pki1 + U1 — k;1) — t;1. All

derivations leading to expression still apply in this case, with the virtual suprlus now being

VSi1(0) = (05, —U) =0 — i(&zp) =20, — (1+U +0).
¢i(0:.r)

The optimal allocation rule is hence given by

i1(0) =

1 ifb,r> éi,l
0 otherwise
where 6;, = max{1+U+9 max;; {0}, F}} However, now the lowest we can set U, 1(0,0_; r) to is

U;1(0,0_; ) = U, implying that the transfers are given by

92'7]7]%71 + U(l — ki,l) —ti1 = U + max{@i,p — éi’l,O}

0,1 —U if0;p >0;
:>ti1(9):{ N BOnE =T

)

0 otherwise

Note that this is not the final solution: k7 ; and ¢;; both depend on HAM, which depends on U, which
depends on «, which depends on k7, hence we have a closed system. Resolving this system yields the
solution.
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Remark: the above adopts an intuitive assumption that entry to the second auction is unrestricted
(which is plausible in this setting). However, this does not fully exploit the power of dynamic mech-
anisms. In particular, Monica could restrict access to the t = 2 auction to only those agents who
participate at ¢ = 1. This means the bidders’ outside option U,, from dropping out of ¢ = 1 auction
is then given by U,, = 0, whereas continuing and not winning car F yields Up = U as defined above
(as long as all agents choose to participate in equilibrium). Asking all players to pay U, — U,, = U in
order to be admitted to the second-period auction could then serve as a free source of extra revenue.
I.e., the optimal first-period mechanism if exclusion is possible consists of k;‘,l(ﬁ) defined above and

ba(0) = 0i1 if0iF >0,
o U, otherwise '

4. We can see that at ¢t = 1, the item is sold less frequently (since the winner’s valuation now must be
ng, as opposed to the 15—9 cutoff at ¢t = 2), and all bidders shade their bids (the winner pays
the second-highest valuation minus U). These two factors suggest that the expected revenue in t = 1
will be lower. However, there is another factor, which is that the competition is more intense, since we
have N bidders for sure at ¢t = 1 and we may have N — 1 bidders at ¢ = 2. This effect may dominate

for small N, leading to higher revenue at ¢t = 1.

above

Either way, the total revenue from both periods would be lower than if the bidders did not about the
existence of both cars from the start. So it might be optimal to announce an auction for ¢ = F, sell
#, and then announce that ¢ = P is also for sale in another similar
SPA. However, that may attract fewer interested bidders N to start with, reducing the revenue again.
In the end, the solution is not clear-cut without further calculations and assumptions about bidder

participation.

that via an SPA with reserve
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