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Dynamic Mechanisms: Introduction




Dynamic Problems
.

m Models considered so far were static: one report, one outcome.
m Although we hinted towards dynamic incentives when discussing interim vs ex post IC/IR constraints.
m There are many dynamic problems in the real world:
m Dynamic pricing when buyers’ tastes evolve (e.g. experience goods) or buyers come and go over time;
B Procurement from firms with changing costs;
m Design of tax and social security systems;

® Dynamic labor contracts
m How to develop dynamic mechanisms? Will see today.

m This lecture mostly follows Bergemann and Valimaki [2019].

What defines a dynamic problem? (1)
I ——

m Why can a dynamic problem not be seen as a sequence of independent static problems?
m Because there can be linkages across periods: (which ruin the independence)
Information — future info evolves from (so depends on) past info and possibly past allocations.
Preferences — usually evolve gradually. For our purposes, can see this as persistence in nformation.

Allocations — set of feasible allocations today may depend on past outcomes (example: sale of fixed
number of items over many periods).

m The same linkages mean that if we try to see the problem as a huge static problem (with
same player in different periods seen as different players), the correlations in players’ info
and the set of feasible allocations will look weird and complicated.




Dynamic Model
.

Periods t € {0,1,..., T}; terminal time T < oo; all players (incl. designer) have common
discount factor 4.

Players i € {1,2,..., N} have evolving types 6, ; € ©;, indep. across i.
m Common prior 0 g ~ F; o; types are Markov processes:

9i,t+1 ~ Fi,t(ei,t+1|9i,ta kt)-

Every period: allocation k; € K; and payments p; € RV.

Set of feasible allocations evolves as Ki11 = g(Ks, k).

PlayerS, UtI|ItIeS ui((ktapt)79t) — Vi(kt,ei’t) - pi,t'

Evolving Types
-

Possible interpretations of evolving types:
m Exogenous evolution (041 L k);

m Example: procuring goods over time from a firm with stochastically evolving costs
Oi 41 = V0t +€ity1.

m Endogenous evolution (depending on k);

m Example: worker assigned to training by k¢ will improve their future productivity 0; ;1.
m Random arrival;

m Players can arrive at the mechanism at random times.

m Can model that by setting 6; ; = @ whenever i is not in the market/mechanism.




Dynamic Model: Assumptions
.

To fix ideas, assume the following for this class:

m The designer can commit to the whole future mechanism at t = 0.
m Contracts are binding — we ignore per-period IR constraints (except maybe IR at t = 0).

m Justification: in quasilinear model, can ask players to put collateral at t = 0, to be repaid at a later
date — this would eliminate incentives to quit mechanism after t = 0.

m All past reports and allocations are publicly observed.

m Player i at time t observes their type 6; ; but not future types.

Direct Mechanisms
e

m As usual, we have the revelation principle, though there are caveats [Sugaya and Wolitzky,
2021].

m So can focus on mechanisms which ask players to report their types every period.

m Reporting strategies given by p; = {r,-7t}tT:0, where r; ; : ©; X Hy — ©; and H; is the set of
public histories hy = {ks, (.5, ---, 'Ns) }s<t

m A dynamic direct mechanism is (k,7) = {k¢, pr}/_o, Where k; : © x Hy — K; and
Pt - @ X Ht — RN.




Dynamic Implementation
.

m Looking for a truthful equilibrium in a direct mechanism.
m “Equilibrium” is a sketchy term in dynamic incomplete-info games.
m There is at least a dozen different equilibrium concepts and refinements in use.

m Main concern in general: off-equilibrium-path beliefs. \WWhat should a player believe after observing
an event they considered impossible? Different answers can strongly affect the predicted outcome.

m Not a big problem in mechdesign — players do not observe any actions until it's too late to act.
m Look for Perfect Bayesian Equilibria.

m Each player chooses report to maximize expected util, expecting others to report truthfully.

B Beliefs are updated using Bayes’ rule whenever possible (i.e., on equilibrium path).

m In general in PBE: We can assume anything we want about off-path beliefs to sustain eqm. In our
problem: won't need to.
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Efficient Dynamic Implementation
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Efficient Allocation
S

m Suppose we want to implement the efficient allocation k*.

m But what is k* in a dynamic problem?

T N
k* € arg max E {Z 5t Z Vi(kt76i,t)}

ket o t=0  i=0

Must optimize over the whole path {k;} [, rather than period-by-period.

m Today's allocation k; may affect tomorrow’s types ;41 and set of alternatives Kiy1.

m Also remember that k; : © x H; — K; is a highly-dimensional object in itself.

So simply finding k* is in general a difficult optimal control problem.

m Remark: ex post efficiency is unattainable in dynamics — k; must be chosen before ;¢
learned. Interim efficiency is the best we can hope for.
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Efficient Implementation
-

m Ok, suppose we found k*, what next?

m In static setting we used VCG aka the pivot mechanism: each player had to pay the
externality they imposed on everyone else:

pi(0) = = v (K*(0),6) + > _ v (K*5(0-1).))

J#i JFi

m The idea translates almost verbatim to the dynamics.

m Problem: the externality that i imposes on others via report 6; ; may manifest in other periods — not
necessarily at t.

m Enter dynamic pivot mechanism! [Bergemann and Valimaki, 2010]
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Dynamic Pivot Mechanism

N
Flow social surplus we(ke, 0r) = Z Vi(ke, 0i¢).

i=1
Welfare Wt(et’ Kt) = pea;)(( {Wt(kt7 9,:) —|— 6]EWt+]_(6t+1, Kt+1)} .
i's marginal contribution M,"t(@t, Kt) = Wt(9t7 Kt) - W—i,t(9t7 Kt)
can be written recursively as M,',t(et, Kt) = m,-,t(et, Kt) + (5]E/\/l,'¢+1 ((9H_1, Kt+1)-
Payments pie = Vi(ki, 0ic) — mj(0:, Kt).

m The dynamic pivot mechanism is given by x = x* and p = {pi*,t}LT:O'
m Note that / must pay his flow marginal contribution rather than simply w(k*) — w(k*,).

m This is because i by influencing today's allocation k;, i will also affect future types of
other players and the set of available allocations — have to account for that.

13
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Dynamic Revenue Maximization
.

m Second canonical question: what is the optimal mechanism?
B Main example: dynamic pricing (there's huge literature, more or less related to DMD).

m With binding contracts: mobile service, loans, insurance

There is one buyer with time-changing valuation 6; € © C R for the item.
What is the seller-optimal mechanism for {repeated purchases, one-time purchase}?

m Again, insights from static models carry over after reasonable modifications.
m Now we want to distinguish between info that the buyer has before signing up for a mechanism

m and which they acquire after signing the contract.

Flashback: Static Model
e

m In the static optimal mechanism, seller's expected revenue was

1 — F(0) Ov(k(h),0)
»() 00
(we derived this for v(k,0) = k0: ER = Eq [k(0) VS (0)])

ER = Eqy |v(k(0),0) —

m Had to trade off max social surplus v(k,8) (i.e., efficiency) against information rents.

m Had to leave some money to the buyer to incentivize truthful reporting.




Static Model — Posterior Information

e

m Consider static optimal mechanism setting (1 period, 1 item, 1 buyer),
m except: buyer only learns 6 after signing up for the mechanism.

m What is the optimal contract?
m Designer's problem is

Eqp(0
?;3;;{ op(0)}

sit. (IC) : v(k(8).0) — p(6) > v(K(6),0) — p(d) V6,0,
(ealR) : Eg [v(k,0) — p].
m Only real difference from Myerson: ex ante IR instead of interim IR.
m Solution: choose efficient k* and charge p(0) = p = Eg [v(k*(0), 0)]
m Perfect information extraction; no information rents to the buyer; full efficiency.
m Remark: this solution would not work with N > 1 bidders competing for 1 item (why?)

Dynamics and Information (i)
I ——

Statement (Future Extraction)

Designer can extract all of buyer’s future info at no cost.

m Same idea: “sell” the item (subscription) to the buyer at ex ante expected value.
m Then only buyer's initial info #y matters for IC:
m in future periods use buyer-optimal allocation rule = buyer's IC is satisfied without any extra
transfers.

m (FE) sounds reasonable, but it is not a formal theorem.
m The literature is currently at the stage “let’s hope that (FE) holds”.




Dynamics and Information (ii)

Statement (Future Extraction)

Designer can extract all of buyer's future info at no cost.

m The literature is currently at the stage “let's hope that (FE) holds”.

m In particular, the protocol is:
Solve the dynamic problem as if all future info is public.

Get some allocation and transfers.
Check whether the resulting mechanism satisfies dynamic IC (at ¢t > 0).

Pray that it does.
m Pavan, Segal, and Toikka [2014] provide some sufficient conditions for this to work, but

these are considered by some as too restrictive.
m We today take the “pray that (FE) holds” approach and only worry about extracting the

buyer’s initial type 6y — we are back to the static problem.

19

Caveat

Statement (Future Extraction)

Designer can extract all of buyer's future info at no cost.

“Ignore future information” is not the same as “ignore future types”!

m Type 0 is (in general) correlated with future 6,,
m so Oy contains some information about 6;,
m so we cannot work as if know 6; for t > 1.

20




Caveat

Statement (Future Extraction)

Designer can extract all of buyer's future info at no cost.

“Ignore future information” is not the same as “ignore future types”!

m Solution: separate types from information through orthogonalization.
m Suppose 01 ~ Fry1(0e41]0t, ke ).
B Let €41 = Fer1(0¢41|0t, ke). Then g441 ~ U[0, 1] and independent of 6;.
B In a direct mechanism, ask player to report g in period 0 and ¢; in period t, then recover 0,1 from
these reports.

21

Virtual Surplus

m Optimal allocation x maximizes virtual surplus = real surplus — information rents.
m This pins down optimal mechanism (k, 7 + C) up to the constant C.
m C is determined from IR at t = 0 — skip the step of finding it.

m In static model, virtual surplus is (note inconsistency in how VS is defined here vs in past
lectures!)

1— F(0) dv(k(0),0)
 9(h) o0

VS(k,0) = v(k(6),0)

m Now in dynamics, real surplus is

S(r.0) = 8 v(ke(Be), 0s).

t>0

Calculating VS(k,0) = S(k,0) — 1;(509(5)0) 85{;;0’9) requires understanding how S depends on

o (the only source of inforents for the buyer).
22




Virtual Surplus
.

85(/4&, 0) t@v kt(e ) 0 ) a@t
000 Z g 00, 000

t>0

m Let /(040 ke1) = g—g; be impulse response function, where 6% = (6, 01, ..., 0;).

m /; shows the effect of 6y on 6, given fixed realization of uncertainty {&s}s<¢.

m Can compute that
t 8FS(95|€S_1,I{S_1)

10,1057 ke ) = — 06s 1 .
k) = = S

23

Virtual Surplus
e

Then
85(/‘4'/, 0) Z(St aV(kt Qt Qt) 801:
009 = 00, 06o
_ Z(Stlt(etwt—l’ kt_l)av(kt(et)’ Ht)
= 00,

so the whole virtual surplus as a function of the whole 6 = (61,65, ...) is

1-— Fo(eo) 05(/@, 9)

VS(k,0) = S(k,0) —

®0(6o) 000
1 — FO(HO) .
= S(k,0) ) /t
(r: ¢o( 0) ;

(again, definition slightly different than in static opt.mech.; this one is more general)
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Optimal Mechanism
.

m To find optimal allocation, take expectation of VS(k,#) over {e:} to get VS(k,6y) and
maximize over . (Still a difficult problem, for the same reasons as for efficient x*.)

max I S(k,0) — ! ;OI(:;SO) Z 5tltavt
t>0

m Then find expected (as of t = 0) payments from the envelope representation of the
buyer's expected utility:

dUp,o(0o) L e Ov(keO)
———— = 0t 1:(6:6 ki_1)———= | 0
i z (0616 ko) =5 |

m Note that this will pin down the “expected-at-time-0" payments E.[> ", 6% p:(6%)|6o).
These payments can be redistributed across periods and histories since both seller and
buyer are risk-neutral.

m Will usually have to do this redistribution to ensure IC at t > 0. No good recipe here. ”s

Dynamic Revenue Maximization: Conclusions
-

Fo 60 t 8Vt
E, : § !
max S(k,0) — ¢0( t>0(5 ‘50, | 6o

m Insight: if |/;| decreasing with t, i.e., fy contains little information about 6; for large t
then optimal k; converges to the efficient k;'.

m Distortions vanish over time.

m See Bergemann and Valimaki (2019, ch.5) for applications.
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Three dynamic polarization results
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What now?
e

m Will look at dynamic mechanisms within some special settings.
m Beyond the models we looked at, not within.
m Will go very quickly: no solving models, just setup and results.

m Will see a common theme emerging.

28
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Three dynamic polarization results

m Thomas and Worrall (1990)

29

Dynamic Insurance [Thomas and Worrall, 1990]
I ——

m One risk-neutral lender (designer), one risk-averse borrower (agent), common discount
factor 5.

m Timet=0,1,....

m Agent receives random exogenous income 6; ~ i.i.d.F[6,].
m Concave utility u(c), so would like to insure.
m Special assumption: u(c) = —oo, where ¢ > 0 is subsistence level.

m Principal designs insurance contract.
m Goal: minimize cost of providing (ex ante expected) util Vj to agent.
m Agent reports 6; in every period, mechanism pays him b:(0:,0;_1,...)
m Perfect commitment on both sides — no IR.

® But must incentivize truthful reporting of income 6; — IC.

30




Agent'’s incentives
.

m At all t, agent maximizes lifetime utility

Ve =) Bu(fs + bs).
s=t

m Let gt = (0o, ..., 0;) be history of past reports.

m Then agent's IC at gt~ ! is:

u(B: + be(g" ", 0:)) + BV (g, 0;) >
> u(0; + be(g" ", 0r)) + BVisa (g7, 0y).

for all Gt,ét.
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Relation to standard model
e

m Note that there are no allocations, only money across periods.

m One way to relate to our standard quasilinear model:

usual model this model

allocation k today’s transfer b;

transfer t continuation util Vi1

m The main intertemporal linkage comes from the need to deliver on promised V.
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Efficient contract

m Moving on to the results.
m In the optimal contract, at every gt=!:
B b; is decreasing in 0, (insurance);
m V,1 is increasing in 0, (1C).
m In particular, b:(0) > 0 > bt(0); Vir1(0) < Vi < Viyr1(6).
m First-best (cheapest way to deliver util V;) would be to provide full insurance, but have to
trade efficiency against info rents, so incomplete insurance in the optimum. (Standard
opt.mech logic)

Immiseration

Theorem (Immiseration)

lim V, 2 —c0
t—o00
m In the limit, consumption and utility converge to ¢ and —oo resp.

m Neat mathematical result, but | haven't found any good intuitive explanations of where it
comes from and after some thorough thinking cannot offer any correct intuition of my own.

m Popular paper, has quite some citations and influential follow-up papers.
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Three dynamic polarization results

m Guo and Horner (2018)
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Dynamic Allocation without Money [Guo and Horner, 2018]
I ——

m One principal, one agent.

m Timet=0,1,..
m In each period: agent's type v € {L, H}, principal chooses a € {0,1}. Utilities (P,A):
(UP, UA) v=H v=1L

a=0 (0,0) (0,0)
a=1 | (H—c,H) | (L—c,L)

with H > c¢c > L > 0.

m Idea: principal can provide funding for agent’s project, it is costly for the principal, but
agent always wants more funding.

m Persistence: P(vip1 =vi) =p > 1/2.

m Principal’s goal: max own discounted util subject to IC.
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Connection

m Like Thomas and Worrall, but there had only transfers, no allocations. Here only
allocations, no transfers.

m Same idea behind IC: induce truthtelling today by varying future utility promises.

usual model this model
allocation k | today's allocation a;
transfer t | continuation util Vi3

m Opt. mech: if agent does not require funding today, allow to claim more funding in the
future. For v = H agent, funding today is more valuable than in the future (since
Eviis < H), for v = L future funding is more valuable than today = IC.

Polatization

mlet U =(1-0)E [ZsZtés_tatvt} denote agent's util.
Note U; € [0, U} for some U.

Theorem (Polarisation)

Under the optimal mechanism, U, — {0, U} as t — co.

m U; is (not really, but similar for our purposes to) a martingale bounded on both sides —
both boundaries are absorbing, and U; hits one of them sooner or later.
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Three dynamic polarization results

m Li, Matouschek, Powell (2017)
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Power Dynamics in Organizations [Li et al., 2017]
e

m One principal, one agent.

m Timet=0,1,..

m In each period: principal chooses a € {0,1,2,3}. Utilities (P,A):

principal | agent
a=20 (default) 0 0
a=1  (agent-preferred) b B
a=2 (principal-preferred) B b
a=3 (nuke humanity) —00 —00

with B > b > 0.

m Principal-preferred project only available at any t with probability p. Only the agent knows
whether a = 2 is available at a given t. Agent suggests a project to principal at every t.

m Principal’s goal: maximize expected util subject to agent's IC. w0




Possible Modes
S

m Centralization

B Principal always chooses the default a = 0.
m Cooperative Empowerment

B Agent suggests and principal implements principal-preferred a = 2 when available, agent-preferred
a = 1 otherwise.

m The “best” outcome.
m Restricted Empowerment

m Agent suggests and principal implements principal-preferred a = 2 when available, default a =0
otherwise.

m Unrestricted Empowerment

m Agent suggests and principal implements agent-preferred a = 1 always.
m Total Annihilation

m Principal implements a = 3; only used as off-path threat.

Polatization
e

In the optimal relational contract, the principal chooses cooperative empowerment for the first
T periods, where T is random and finite with probability one.

For t > T, the relationship results in unrestricted empowerment, restricted empowerment, or
centralization forever

m The relationship inevitably slips out of the cooperative mode into one of the uncooperative
ones:
B either the agent gets unlimited power,
m or the principal loses trust in him.

m Although convergence to restricted empowerment (semi-cooperative outcome) is possible...




Conclusion

m Lessons from the three papers:

B relying on promises of future utility for incentive provision leads to huge asymptotic inefficiencies.
m Drastically different from the quasilinear setting we considered,

m where inefficiencies vanished over time...
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