Kgbenhavns Mechanism Design Fall 2024
Universitet Exercises for Lecture 4 Prof. Egor Starkov

Exercises for Lecture 4:
Revenue equivalence

Problem 1: Payoff equivalence in BIC mechanisms

Prove the payoff equivalence result for BIC mechanisms using the analog of the argument we had for DSIC
mechanisms (i.e., by showing monotonicity first). Assume that players’ types are mutually independent.

Solution
BIC IC constraints for types 6; and 6; to not be willing to mimic each other are:

Eo_ [0:k(0:,0-5) — 1(6:.0-0)) > Bo_, |0.k(6:.0-1) —1(0:,0-)] &)

E,_, {éik(ai,o_i) —t(&i,ﬁ_i)} <Ey {éik(éi,a_i) —t(éiﬁ_i)} . 2)

Add and subtract Eg_, [élkz(é“ 94)} from the right-hand side of (1) to obtain

T:(6:) > U(6;) + (0; — 6;)Eq_, [k(a},a_i)} : (3)

where U; (6;) is the interim expected utility of type 6; from truthtelling: U;(6;) = Eq_, [0:;k(0;,0_;) — t(6;,0_;)] =
Ey_, [U(6;,0_;)]. Doing an analogous manipulation with (2), combining the resulting inequality with (3),
and rearranging the two then yields the following, under the assumption that 6; > 6; (you can do the same
with the converse):
Ui 91 — Ul éi A
B, o0 > PO gy (0] (W

The expected allocation k;(6;) = Eg_, [k(6;,0_;)] is thus monotone in §;. Monotonicity implies continuity
almost everywhere, hence the following is true for almost all 6;:

Alim kl(él) = ];?1(91) (5)

Now take limits of (4) as §; — 6;. By the theorem about two policemen® together with (5), we have that

U.0;) - Ui(6:)

lim 0 ZU0) _ g0y (6)
6;—0; 91' — 91'

for almost all §;. The left-hand side of (6) is the definition of the derivative of U;, hence %é?i) exists and

%éfi) = k;(6;) almost everywhere.? Applying the Fundamental theorem of calculus, we get that for any éi,

Thttps://en.wikipedia.org/wiki/Squeeze_theorem
2 At points of discontinuity of k;(6;), function U;(6;) will have a kink, and all values between the two limits limg g ki (0;)

and hméi\fh ’_ﬂ(él) will be subderivatives of U; at that point. For purposes of applying the Fundamental theorem of calculus,

we can safely take k;(6;) to mean the derivative of U; at such points.
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the following holds:

Il
N
—

>

i

0;
i) +/é Eo_, [k(s,0_;)] ds.

(7)

(8)

We have obtained the envelope representation of payoffs, and now we can make the final step towards the

revenue equivalence. Recall that

Ui(60;) = Eg_, [0:k(0:,0_;) — t(6;,0_,)]

& By, [1(0:,0-:)] = —Ui(0:) + Eg_, [0:k(6:,60 )]

— A 61
— T — /9 Eo . [k(s,0_5)] ds + Eo_, [0:k(0:,0_:)].

i

Therefore, for any two BIC DRMs = = (k,t) and o' = (K, ), if Bg_, [0:k(0;,0_;)] = Eg_, [0:k'(0;,0_;)], then

Eo_, [t(0:,0—:)] — Eo_, [t'(0:,0_5)] = —U;(0;) + U} (6y),

where on the RHS we have the equilibrium (truthtelling) utilities of some fixed type 0; in the two mechanisms.

Denoting this difference by h; proves the statement of revenue equivalence.

Problem 2: Efficient public good provision 2

Consider the public good provision problem from the previous problem set, described as follows.

There is a society of N people. They must collectively decide whether to implement a public project. Let
k € {0,1} denote the outcome of this decision: k& = 1 if project is implemented, k = 0 otherwise. Every
person ¢ has some private valuation 6; € R for the project, positive or negative. Preferences are linear, so

i’s utility can be written as

Here © = (k,t) stands for some direct mechanism which prescribes outcome k(6) € {0,1} and payment
profile ¢(0) given profile of reports 6.

1. Fix an arbitrary ¢ and 6_; and suppose that we want to implement (in dominant strategies) an allocation
rule that satisfies k;(6;,0_;) = 1{6; > 6;} for some 6; (where I{-} is an indicator function).

Use the envelope representation of payoffs to derive the (class of) transfer rule(s) for ¢ that DS-

implements k; given 6_;.

2. Suppose the public project has cost ¢ > 0. Find the efficient allocation rule k*(#). Use your findings
from the previous question to derive the (class of) transfer rule(s) for all players that implements k*

in dominant strategies.

3. Conclude that only Groves’ transfers can DS-implement £* in this problem.

3To clarify why exactly we can denote h; = —Ui(éi) + U{(él) note that once we fix some respective “comparison types” 0;
for every player i, this expression only depends on the identity of player ¢, but not on their actual type 6;, and not on other

players’ reports 6_;.
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Solution

1. ERP for DSIC mechanisms tells us that the following must hold in an IC mechanism:

0;
UZ(QZ7 972) = Ul(él,efl) + /ki(s,e,i)ds

6;
ive—i) + H{e
i?e—i) + (0

Nl

i >0} (0; — 0;)
G

(

U;
Ui(

=Y

i

where we have chosen 6; as our “anchor” type, and the second line used the allocation rule given in
the problem. The third line above uses the simplifying notation (z); = z - I{z > 0} = max{0,z}.
Plugging U;(0;,0-;) = 6;k(0) — t;(6), we get the expression for the transfers:

ti(0:,0_3) = 0:k(0) — Ui (8;,0_;) — (0; — 6;) +
[-Uibi0-) it <,
0; — Us(6;,60_;) if 6; > 6;.
Importantly, ERP implies that the transfer rule must satisfy the form above to support the desired k;
rule — no other transfer rules would work.

. We can account for the cost by including it in the preferences of the principal: ug(z, ) = —ck—i—Zﬁv:l t;.
Then the efficient allocation rule is

N

k*(0) € (K, 1), 0
) € org x5 (5,00

N
€ argkg%ﬁ} { <;9Z — c> k}
N
= H{Zel > C} .
i=1

Note that it fits the representation given in the previous question, with 0, = c— > ki 0;. Hence a
transfer rule ¢(f) DS-implements k*(6) if and only if it satisfies

hi(0_, if 0; < 0,
ti(0i,0-;) = 0 1 7] ®)
C_Zj;éi 6‘]- +h1(971) if 0; > 0;,

where hi(6_;) = —U;(6;,0_;).

. Tt is easy to see that (9) is exactly the expression for Groves’ transfers in this problem, and ERP implies
that in any DSIC mechanism with allocation rule k*, the transfer rule must satisfy (9). The statement
in the question then follows.

Problem 3: Implementation in auctions

Consider the auction environment with two buyers and one item for sale. Suppose that each buyer i has
willingness to pay 6; € [0, 1].

1. Draw a square with #; on the horizontal axis and 65 on the vertical axis. A point in the square
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represents a profile (61,62).
2. Draw a downward sloping curve through the box.

3. Draw an upward sloping curve through the box that intersects the downward sloping curve (exactly
once.)

4. The region above your downward sloping curve is divided into two subregions by your upward sloping
curve. Label the subregion that is above your upward sloping curve with a 2 and label the other
subregion with a 1. Label the entire region that is below (and to the left of) your downward sloping
curve with a 0.

5. Consider the allocation rule that is defined by your drawing. In the 1 region agent 1 gets the good, in
the 2 region agent 2 gets the good and in the 0 region neither agent gets the good. (On the boundary
between regions pick the allocation from one of the neighboring regions. ) Find a transfer rule which,
when coupled with your allocation rule, forms a DSIC mechanism.

Hint: you will probably need to use the envelope representation of payoffs:

0;
6

=i

In particular, you can derive transfers that support k using the expression above. But if you did Problem
3 above, you already know that.

6. Is there any DSIC allocation rule that picks alternatives from the set {0,1,2} that could not be
represented by a drawing that follows the instructions given above?
(If not: argue verbally why not. If yes: draw a graph and argue intuitively why the & you drew would

be DSIC.)

Solution

We will work with Figure la. Of course, there will be some things that are specific to the drawing, but the
way we will solve the exercise should illustrate the general procedure for different figures.

Based on the figure, we construct the following allocation:

0 iffy+ast <by or 0O3>b+ab

1 otherwise

k1(01,02) :{

0 iffs+agf <by or 6Oy <b;+aib

k2 (01,02) :{

1 otherwise

We know that the allocation must be monotone for it to be implementable. However, it is very easy to
check (just observe the drawing) that fixing the type of the other player, the probability of getting the
good weakly increases with the player’s type. Now we have to construct the transfers to implement this in
dominant strategies. We will make use of the envelope representation of utility, mainly of the result that:

0;
0

are the transfers that work.

Let’s start with ¢1 (61, 62). Note that if 65 > 6, then no matter what type player 1 announces, k1(-,02) = 0.
Hence, t1(61,02) = 0 for 62 > 63. Consider now 0y € [03,05]. In that case, k1(61,02) = 1 if and only if
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92 92

Bo [=Nmrmrmrmm s 32:a191+b1 k=29

= bg —a201

0 i, 16 6,
Panel (a): k(6) fitting the problem Panel (b): k() not fitting the problem

Figure 1: Allocation rules for Problem 3.

0, > %. Then for 05 € [ég,ég]:

: 02—0b
0 if 0 <t

t1(61,62) = { 93—b,

otherwise

a

where the last part comes from using (10) and noticing that ¢, = 92@_11’1 and setting Uy (0,) = 0:

0 0y —b
t1(91,92):017/ ].d’ll,:g
02—b ay
ay
Finally, consider 6 < 0. In that case, k1(-,62) =0 for 67 < b2a_292 = 0,. Then, in that case:
0 if gy < 2=f
t 0 9 = - az
1(01,62) { 7(72;202 otherwise

Notice that, apart from Problem 3 saying it is the case, it is clear why the mechanism is DSIC: whether the
player pays or not depends on his announcement, but not how much he pays. In this sense, it is like an SPA.

We can calculate the transfers for player 2 in a similar manner. Consider 6; < 0. Then, ko(61,62) = 0 if
92 S b2 — a291. Then,

0 if 92 S b2 — a201
by — as0; otherwise

to(01,02) = {
On the other hand, if 6; > 91, we have that ks (61,602) =0 if 2 < a101 + b;. Then:

0 if 60<b 0
t2(01,05) = 1 2 < 1.—|—a1 1
b1 + a10; otherwise
Now for the last part of the question: whether there exists a DSIC allocation rule that cannot be represented
by a drawing described in the problem. The answer is yes, one example is as follows. Consider the allocation
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depicted in Figure 1b, which is given by (the exact numbers do not matter):

1 if 91 Z max{0.7 — 6‘2, 0.2 + 92};
k(01,02) = ¢ 2 if 03 > max{0.7 — 01, 0.2+ 61 };

0 otherwise.

This allocation is again monotone for each player (k; weakly increasing in 6; given fixed 6;). We can construct
the transfers that DSIC-implement it in the same way as we did in the main problem above (using (10)).

Problem 4: Payoff equivalence in auctions

Consider an auction for one item and N bidders with valuations 6; ~ .i.d.U[0,1] and linear preferences.
Consider three different auction formats, in which all bidders submit bids simultaneously:

o First-price sealed bid auction, in which the highest bidder wins the item and pays their own bid. In
such a format with 6; ~ U[0, 1], bidder i’s equilibrium bidding strategy is b7F4 = %Gi.

e Second-price sealed bid auction, in which the highest bidder wins and pays the second-highest bid. In

such a format, it is a weakly dominant strategy for bidder i to bid their valuation: b?F4 = ;.

e All-pay auction, in which all bidders pay their bids, and the highest bidder wins the item. In such a
format with ; ~ U0, 1], bidder i’s equilibrium bidding strategy is bA74 = %GZN

Calculate the bidders’ (interim) expected payoffs and the auctioneer’s (ex ante) expected revenues under the
three formats. Verify that they are the same across the three cases.

Bonus question: verify that the bidding functions given for FPA and APA do indeed constitute an equilib-
rium.

Solution
We use the following notation conventions, given some player i:

Ui(ai) =Eg_, [911_%(91) - fi(ei)] )

0oy = max 0.
@ = e Ny

(The 6 is a slightly weird piece of notation, since its value depends on both the i’s identity and the type
profile 0, neither of which is reflected in the notation — which should be more like 65y ;(6) or 6(2)(6_;). Both
of the latter options feel quite heavy though, hence we use simply 62).)

Further, it will prove useful to derive the distribution of max;c¢y, . n} 0;. Its cdf is given by @y (z) such that

@N(x)IP’{ max Gigx} I P{o<a}

ie{1,...,N} jefl,...N} (11)
= ] @@=«
je{1,...,N}

for x € [0, 1], where the second equality follows from the independence of players’ valuations, and the final
equality uses 0; ~ U[0,1] = ®;(x) = z for z € [0,1]. The respective pdf is then given by ¢y (z) = Na¥ 1.
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FPA. Given the proposed bidding strategy, the highest-valuation player wins the item. Bidder ¢’s interim
expected payoff is

Ui(0;) = Eg._, Kei N 1@) 1{0; > 0;,V] # i}}

N
—E, %110, 50.vi2i
= Le_; N {z> R ]752}
0;
= 5 Eo. [I{0: > 62 }]

where the third inequality follows from the definition of f(3) and from % being independent of #_;. Then
since 0; is fixed, and the expectation of an indicator of an event is simply the probability of this event, we
get

_ b
N

0; 0; _
.]p{g(Q) < gi} = N*I)Nq(@i) = .glN 1_

3

N

N
0:(6:) il

To show that the suggested strategy indeed constitutes an equilibrium, take some bidder ¢, suppose all other
players bid according to b;(6;) = %9]‘, and maximize i’s interim expected utility w.r.t. their bid b;:

— (6 —b) Dy (Nsz-l) (6 b (%)Nﬂ.

Taking the FOC of the maximization problem and solving it for b;, we get

Ui (bi, 0; N \Y!
de;;,.’a)=(N_1) [(N = 1)) 2 = N6 1] = 0
. N-1
ébi_TQZV

as conjectured.

Moving on to the designer’s profit:

Eo[R] = Eo[~1o(60)] =Eg |3 ti(ﬁ)]

=Ey _ie{rflﬁ.),(zv} 51(91)]

=y

max —U;
lic{l,...N} N

N -1
= E 0;
N 0 Le{ql,?}fjv} ]
N—-1 [t

=——~ [ zén(z)dx
0

N
N—-1 [t
:7/ NzNdx
N 0
~N-1

N-1 ]

N+1
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. = _ oy _ N-1
In the end, in the FPA, U;(0;) = 5+ and Ey[R] = {77

APA Following the same logic,

U6 =B, [6:1(0: > 0,5 # i} — L6
N-1 oN
=0,-0N 1 —__—pN = "L
=0,-06; N 0; .

In the second equality above, the first term is obtained using the exact same calculations as for FPA, and
the second term lacks the expectation because it does not depend on 6_;.

To verify that the proposed strategy is optimal, proceed as in FPA:

_ N -1
Ui(bi,0;) = Eg_, [ei . H{bi > TQ?’,W #* Z} - bi]

Nb; \ ¥
=0,On_1 ((N—l) ) —b;

Nb;
= 91 - bz
(1)
-1
dU;(bi, 0;) N \" _
db; 02<N—1> b, —1=0
N -1
=b=—0N
(3 N (e
as conjectured.
For the designer’s expected revenue,
N
Eo[R] = Eq Zti(e)l
i=1
N
N-1
LR
i=1 N

The third equality above splits the expectation of the sum into the sum of expectations (using the linearity
of the expectation operator) and notices that the expectation of #¥ only depends on the realization of 6;,
but not on any of the other 8;. The fourth equality collapses the sum (since all the expectations are equal,
due to symmetric distribution of valuations) and rewrites the expectation explicitly (with the pdf of §; being
¢(x) =1 for z € [0,1]).
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SPA Interim expected utility for the bidder:

=0;-0N ' By, [0(2) - 1{6; > 0;,¥) # i}]
=0 — Eoq,, [02) - L{0(2) < 0:}]

=N — /1 [z -T{x < 6;}](N —1)2N2dx
0

K2

0;
=0N — (N - 1)/ eV dx
0
v N1 _ 067
’ N N’
In the above, the second equality uses the same calculation as FPA for the first term. All other manipulations
concern the second term. The third equality notices that out of all information about all 6_;, only 0 is

relevant. The fourth equality writes the expectation down explicitly, using the distribution obtained in (11).
The remainder is just algebra.

The expected revenue of the designer is given by:

However, the meaning of () is different here, which should ideally be reflected in the notation but isn’t.
In the previous cases, when we took 6; as fixed and took expectation over 6_;, it was the case that simply
02y = maxjcqi,... N1\ (i) 05, 1-e., it was the highest valuation among N — 1 bidders. Now, though, we
need to genuinely calculate the second-highest bid among N bidders. We can derive its pdf ¢(2)(z) as the
probability /density, for any x, that exactly N — 2 valuations are below z, one valuation is at x, and one
valuation is above x. Since the latter two can belong to any bidder, there are a total of N (N —1) permutations.
In the end:

gZ)(g)(x):N(N—l)':rN*2~1~(1—x)

1
= Eg[R] = Eg [02)] = /0 eN(N — 1)2N72(1 — 2)da

=N(N —-1) Uolledx—/ola:Ndm]

1 1
) 1 _N-1
)N(N+1)*N+1'

= N(N —

Hence we see that bidders’ interim expected utilities and the designer’s expected revenue are indeed the
same across all three formats.
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