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Done so far
e

m Introduced basic notions and criteria:

m s.c.f.,, mechanism, implementation and implementability (DSIC, BIC),

m efficiency, individual rationality, budget balance.
m Covered some fundamental results in Mechanism Design:

m revelation principle (pretty universal),

m payoff/revenue equivalence (Euclidean model, slightly generalizable),

B necessary conditions for implementability (weak preference reversal, monotonicity)
m Learned to implement the efficient s.c.f.

m DSIC: VCG;

m BIC: AGV, gVCG.




Today

m Finished with implementing efficient s.c.f.s
m Today will look at revenue maximization.

B Revenue-maximizing mechanisms called “optimal” in the literature (meaning optimal for the
designer), after Myerson's “optimal mechanism”.

m gVCG was optimal in the class of efficient mechanisms. Now we remove the restriction on
allocations.

This slide deck:
S

Two types (Monopolistic Screening)




Setting 1: one buyer, discrete type
.

m Starting simple (Monopolistic Screening / Second-Degree Price Discrimination).

m Seller-designer can set quantities k and prices t for product, has production costs
c(k) = k*(= —wo(k)).

B As usual, designer has no private information. “Informed principal” is a difficult problem.

m There is one buyer with valuation 6 € {L, H}, private info. Prior probabilities are
(H) = ¢, o(L) =1—¢.
m Buyer's preferences Euclidean: wuy(x,0) = 0k — t

m Is this a Euclidean model?

Monopolistic Screening
-

m As usual, look at DRM I = (O, (k, t)). Notation-wise, let kg = k() and ty = t(60).

m Seller's problem (contrary to before, we can now choose k in addition to t.)

2 2
max {@(tn — kiz) + (1= 0)(t — ki)} show ICyy and IR, imply IRy;

st. (ICH): Onky — t > Ok — 0 show ICy and IC; irr.1p|3./ ky > k-,_;
show ky > k; and binding ICy imply ICy;
UC) = Ok —tn < Ok — 1, show ICy and IR, bind;
(IRH):  Onky —ty >0 solve for optimal (k, t).
(/RL) O kg —t. >0




Monopolistic Screening: lessons
.

Lessons:
offering a menu may be optimal to extract value from buyers;
explains weird non-linear prices you can often encounter;
quantity is distorted downward for low type
B high type gets information rent (pays below valuation);

IR must bind for at least some type.
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Interval of types (Optimal Mechanism)




Setting 2: one buyer, interval of types
.

m Designer/seller has one indivisible item for sale. Chooses menu including probability of
sale k(0) € [0,1] and payment t(#) given report 6, no costs for simplicity.

m Nothing changes from when k was quantity, since everyone is risk-neutral.
m Buyer has valuation ¢ ~ ®[0, 0], private info.
m Buyer's preferences Euclidean: v, = 0k — t.

m Buyer's outside option yields utility zero: U,(6) = 0.

Optimal Mechanism
e

Solution approach

Show: if §/ < 0" then k(6') < k(6”). (use the two ICs)

Get the envelope representation Up(0) = Up(0) + fog k(s)ds
(BIC and DSIC ERPs yield the same expression, since there is only one player).

Recall that Uy (6) = 0k(0) — t(0), so

EUs = Eq[t(0)] = Eq [0k(0) — Up(0)]

=Ey [0/((0) — /0 k(s)ds] — Up(0)
— 0 _
_ /09 0k(0)$(0)d0 — /06 /06 K(5)6(0)dsd — Up(0)

0 0
- / 0k(0)H(0)d0 — / (1 — (0))k(0)d0 — Up(0)
0_ J0

A 1— ®(0)
~ [ o) (e— 0 )¢(9)d9—ub(o>
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Optimal Mechanism: integration by parts

Integration by parts under the microscope:

/O ' ( /0 6 k(s)ds) $(0)do

- / " F(0)K(0)do
0

0
d(0) /0 k(s)ds

0=0

0 0
/ K(0)do — / O(0)k(6)d0
0 0

/ " (1~ o(8))k(0)d8
0
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Optimal Mechanism: pinning U, (0)

6 _
BU. = Efe(0)] = | 40 (0 - 1qu§9)) 6(6)d6 — Us(0)

m To choose: allocation rule k(#) and Up(0) (pins transfers).
s What do with Up(0)?

® Want to minimize since decreases revenue.
m Gotta be Uy(0) > 0 to satisfy IR for § = 0. Other types?
B Recall Up(0) = Up(0) + foe k(s)ds and k(0) > 0, so Up(0) > Uy(0) for all 0,

m hence Up(0) = U,(0) = 0 is optimal (max revenue, all IR hold, IR binds for § = 0).
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Optimal Mechanism: optimal k

m What do with k?

1-®(6)

m Define virtual surplus V5(0) := 6 — 30

1 if VS(6) > 0;

m Pointwise maximization: k(6) =
0 if V5(9) <0;

B Remember: k() is only implementable if it is monotone! Sufficient condition: VS(0) increasing in 6.

® In the end, if V5(6) is increasing in 6, the optimal mechanism is given by k(€) as above and t(6)
that can be computed from ERP.
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Optimal Mechanism: Virtual Surplus
.

m What is virtual surplus?

m It reflects information rents we have to pay to high types to incentivize them to reveal type honestly.
()

1-0(0)"

The assumption we usually live with; need suitable distribution ®(8).

m Sufficient for increasing VS(6) is increasing hazard rate

m What do if “unlucky” and ®(0) is such that VS is sometimes decreasing?
m “lroning”: find monotone k() that is “closest” to the unconstrained optimum.
m E.g. if VS is globally decreasing then some constant k is optimal.

B There is a kind of a general approach to this, but it's difficult, see Kleiner, Moldovanu, and Strack
[2021].
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Optimal Mechanism: non-linear preferences
.

m Note that linear preferences v(k, ) = 0k are not necessary for any of this.
m With general v you will not get a nice decomposition k - VS in the integral.
m But you can still obtain something like

4 av(k(0),0) 1— d(0)
| (vtkor - 2D 2220 o)

and define VS(0) = v(k(0),0) — av(ka(g),e) : 1;?;()9) (note it's slightly different from how we
defined VS in the linear case)

m And you can still find the optimal k by maximizing this virtual surplus (and it still has to
be monotone)
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Optimal Mechanism: Lessons
e

m Incentives are costly.

m If 0 is an attractive type to imitate, have to distort 0's allocation k(6) compared to first-best
(full-info benchmark).

m (That's why k(f) is not distorted.)

m Even though gains from trade always present, optimal to commit to not sell to low types
to charge high types more.

m Distribution ¢ matters: if more high types then focus on them and sell with lower
probability to the low types.

m It will most of the time be optimal to have some cutoff rule: k() = I{0 > 0} for some 0.

B Things become more interesting in multi-item case, see Manelli and Vincent [2007]
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Optimal Mechanism: Example
.

m Derive the optimal mechanism when 6 ~ U0, 1].
1—9(0

m VS(0) =0 - 5 =201,

hence optimal k(#) = I{6 > 0.5}. Payments?

Up(8) = Up(0) + [ k(6)d6 = max{6 — 0.5, 0},

so t(A) =0.5-1{0 > 0.5}. Fixed price is optimal!

Actually cannot do much better than fixed price in this simple trade model.

m Maximizing [ k(6)VS(0)d6, which is linear in k(6) for all 6. So we'll typically have either a cutoff
rule, or constant rule — unless VS(6) non-monotone.

m Consequence of Euclidean payoffs. More interesting results with non-linear payoffs.
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Many buyers (Optimal Auction)
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Setting 3: many buyers, interval of types
.

m Designer/seller has one indivisible item for sale. Chooses allocation k(#) € A(N) and
payment profile t(0) € RN given report profile 6.

m Buyers i € {1,..., N} have valuations #; ~ i.i.d.®[0,0;], private info.

m Independence of 0; is important, since we rely on revenue equivalence / ERP
m Buyer's preferences Euclidean: v, = 0;k; — t;

m What is the optimal BIC mechanism that maximizes seller's expected profit?
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Optimal Auction
e

m We are effectively designing the optimal auction.
m Selling the good to the highest bidder is efficient (assuming higher-value buyers bid more),

m so all standard auction formats — first-/second-price, Dutch, English — are revenue-equivalent! (buyer
with value zero gets zero)

m To get more profit often have to depart from efficiency, e.g. by
m setting reservation price,

m discriminating buyers (even if they are ex ante identical!).
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Optimal Auction

m From the perspective of the individual bidder, things are not much different from
single-player model, just take expectations over 6_;:

t:(0;) = Eg_ t:(6;,0_;)
ki(0;) = Bg_ ki(0;,0-))
Ui(0i) = Eo_,ui(x(0;,0-7).6;)

m Monotonicity: if 8 < 6/ then k;(0)) < ki(67).

m Envelope representation:

0;
0:(0;) = Gi(0) + /0 ki(5)ds.
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Optimal Auction: Seller

EUs = Eg

Z t,-(0)]

= ZEG [0iki(0) — Ui(0)]
ZEG; [0:ki(6;) — U;(6;)]

-5 [ i (o500 -0

ZEgk(H)VS i) — U:(0)]
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Optimal Auction
.

m As before, set U;(0) = 0.

EUs = R ki(6;)VS;(0))

=Ep Y _ ki(0)VSi(6)

m Pointwise maximization: for any 6, give the item to / with the highest VS;(0):

0 otherwise

ki(0) — {1 if i = argmax; VS;(0)
(break ties as you wish)
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Optimal Auction: Conclusions
e

m Naive (pointwise) solution works only if the resulting allocations satisfy monotonicity.
m If they don't: 777
m lroning is even more difficult because of joint constraint on allocations: > . k;i(6) < 1.

m Allocations are inefficient:
m Inefficient withholding when 6; > 0 but VS; < 0 (and i € arg max; VS;).

B VS, depend on respective distr-ns of 6;'s — asymmetric players are treated asymmetrically.

m In symmetric case, the optimal auction can be implemented as one of standard formats
(FPA, SPA, APA, Dutch, English) with reserve price.
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Optimal Contests
.

m Related topic: optimal contests.
m N contestants exert effort, have private abilities.

m Designer’s goal: maximize total effort (e.g. maximize the amount of science that competing reserach
teams produce).

m How should designer choose size and number of prizes; winning rules etc?

m Will not cover in this class.
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