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Exercises for Lecture 2 (M1):

Revelation Principle, DSIC Mechanisms

Problem 1: Søndre campus

There are currently talks at KU about moving the Faculty of Social Sciences from the Kommunehospitalet

that we occupy now to Søndre campus, where some other faculties are currently located.1 The costs and

benefits of such a move are currently being evaluated. Some, however, see this whole discussion as a

bargaining maneuver in the upcoming negotiations with the firm that owns the Kommunehospitalet and

leases it to the university – a credible threat of leaving may help the university bargain a better lease rate.

Your mission is to frame this choice of whether SAMF should move as a mechanism design problem. The

goal of the mechanism is to extract the information about costs and benefits of the potential move from the

relevant parties. In particular, answer the following questions within this setting:

1. Who is the designer?

2. What is the outcome in this setting? (Do we have access to transfers? Is the set of allocations k given

by simply K = {move,no move} or is it more multifaceted?)

3. Who are the players?

4. What information do the players have that is relevant to determining the optimal outcome/allocation?

5. How would you model the players’ utility functions? (Give a concrete example.)

6. What criteria or conditions should the mechanism satisfy?

7. What would be the desirable outcome/allocation rule that you would want to implement with such a

mechanism? How can you check whether this rule is, in fact, implementable?

8. If you allowed for transfers: how would you proceed with designing transfers that support the chosen

allocation rule? (You do not need to actually derive the transfers. You may also want to return to this

question in a few weeks, when you know more.)

9. How would your mechanism work in the real world, in terms of organization and logistics?2

NOTE: treat this as a real-life assignment from the university officials. Your goal is to give the best possible

answer to the question they ask, NOT to frame the problem in the simplest way possible. That said, you

should still be realistic and try to set up the problem in a way that would be tractable and doable given the

resources available to a committee responsible for this decision.

Solution

This is an open-ended question, so many answers are possible. Below is one example.

1. The designer is the university leadership (rector), possibly proxied by a “committee on moving”.

2. It feels somewhat strange to include monetary transfers in this problem. While it may be fine to pay

small amounts to students and faculty for completing a survey or pay departments to compile a report

on a given issue, making these payments contingent on responses to provide incentives is the weird

part, which will likely not be well accepted. Therefore, an outcome is simply an allocation.

1News article from Uniavisen (in Danish): https://tinyurl.com/y4uwrefe.
2Example: “all faculty, staff, and students must post a note on the door of their office which would contain their report of

something; a dedicated person will walk around and enter responses in an excel sheet, which will then be used to determine
the outcome”.
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An allocation, however, is much richer than just a binary decision. In case of a move we would also

need to decide how to allocate the spaces on Søndre campus between the departments and faculties,

whether to build new lecture halls (or force the students and faculty to commute to CSS or Nørre

campus for classes), whether and how to merge the duplicating departments, etc.

3. The set of players should include anyone who possesses information relevant to the outcome, and has

preferences regarding the outcome, which could prevent them from communicating this information to

us truthfully. In this problem, this includes:

• Students, faculty, and staff, who all have private valuations for the move.

• Future students, for the same reason. We obviously cannot include future students in our mecha-

nism because we do not know who they are, so the next best option is to let the current students

speak on their behalf.

• The university’s building administration, which knows how much room capacity SAMF requires,

how much capacity is available on Søndre campus, how much the exploitation of these rooms costs

on both campuses, and how much it would cost to build more lecture halls on Søndre campus.

It is not immediate that there exists any conflict preventing this information from being openly

communicated, but there could be some. E.g., I believe that at the moment, these administrations

exist separately on different campuses, so they may be opposed to merging or, conversely, they

may actively prefer the merge.

• Some university departments (e.g., IT) can better estimate the cost of the actual process of

moving. Potential conficts of interest are as above.

• The firm which owns the Kommunehospitalet and leases it to the university – it likely has some

understanding of what its outside option is in case the university leaves, and the company would

have to find new tenants for this property. Note that it makes a lot of sense to allow monetary

transfers with this particular player.

• ...

4. See above.

5. For concreteness, let us suppose from this point onwards that the costs of the move can be evaluated

by internal departments without any conflict and need for a mechanism. Then our set of players is

narrowed down to two groups: stakeholders (students, faculty, and staff) and the propertyowner firm.

The firm’s utility can be modelled as:

uf (x, θ) =

{
−tf if no move;

θf if move,

where again the firm’s type θf is its outside option relative to continuing the current agreement, and

tf is the negative of the change in lease that KU pays for the Kommunehospitalet. The firm does not

care about the details of the move if it happens.

With stakeholders it is a little more difficult, since the details of the allocation now matter. What we

can do is assume that the allocation can be split into a number of aspects l ∈ {1, ..., L} and each kl
can be represented as a number. E.g., one aspect is “will all classes be held in the same place after

the move”, another is “if yes, will this place be Søndre campus”, another is “will there be place for a

student bar”, etc. If we take this approach, then stakeholder i’s type can be represented as a vector

of valuations for every aspect θi = (θi,1, θi,2, ..., θi,L), and then the utility can be approximated as

ui(x, θ) =
∑L

l=1 klθi,l.

6. We obviously want the mechanism to be incentive compatible, at least in the Bayesian sense.3 Individ-

3Large number of players is one excuse to switch from DSIC to BIC: heuristically, the more possible type profiles θ−i other
players collectively have, the less important every single individual case is for i’s expected utility at the point where they are
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ual rationality (IR) is not an issue, once you realize that “not responding to a survey” is just another

kind of response. While students and staff and faculty have an outside option of leaving KU and

applying to another university, this is likely a very costly option. You can, however, make a case for IR

being a desirable condition to satisfy for future students (so they choose KU over other universities),

as well as the firm that owns Kommunehospitalet (depending on how you model its utility function).

Finally, since transfers are not a part of the problem (except when dealing with the firm), budget

balance in not a particularly relevant requirement.

7. The simplest answer: the desired allocation rule kd(θ) should maximize the stakeholders’ welfare,

i.e., the sum of utilities net of the costs borne by the university. Note that this is not the efficient

allocation according to the standard definition, since it ignores the firm’s well-being. You can also

present various social choice arguments saying that the sum of utilities is not the best measure to

use here. E.g., depending on the university’s priorities, you may want to assign different weights to

students’ well-being versus that of the faculty.

After calculating this allocation rule, you can realize that this problem fits the general setting (but not

the quasilinear or Euclidean, since we do not allow for transfers), so you can use weak monotonicity

of the outcome function/allocation rule to test for implementability. (Again, weak monotonicity for

the general setting, not the weak monotonicity for the Euclidean setting, even though k is a vector of

numbers!)

8. I went with a mix, allowing transfers to/from the firm, but not the stakeholders. If the firm’s utility

entered the objective function, we could use the (g)VCG transfers (that we have not talked about yet)

to align the firm’s objective with the derired objective. However, the firm’s utility is not a part of

the objective function, so the VCG does not work as is. There is no set recipe for this case, but you

can employ the first principles to come up with a mechanism that may not necessarily be best, but is

good enough. In particular, the firm must be unable to change its transfer without also altering the

allocation rule.

The simplest (but not the only!) way to achieve this is to give the firm no power over rent. E.g., the

university can determine its willingness to pay for the Kommunehospitalet given stakeholders’ reports,

and then present the firm with a take-it-or-leave-it offer.

9. It is probably easiest to set up an online survey for the stakeholders, and no issues should arise there.

Negotiations with the firm are a more subtle matter, since using a direct revelation mechanism may not

be appealing for the firm if it does not believe in the university’s power to commit to the mechanism,

or if it thinks its report may be used against it in future negotiations. A take-it-or-leave-it-offer as

suggested above solves this issue.

Problem 2: Supplier Selection

A buyer (designer) wishes to procure a certain volume of an item produced by two potential suppliers,

i ∈ {1, 2}.4 Supplier i = 1 is known to use technology θ1 = a1, while supplier i = 2 uses one of two possible

technologies: either (1) a superior, high-end technology a2, or (2) a low-end technology b2 that does not

scale well. So the second supplier’s type is θ2 ∈ {a2, b2}.

The buyer can choose one of three outcomes: x ∈ {x1, x12, x2}, where outcome x1 means the whole volume

is sourced from i = 1, x2 means the whole volume is sourced from i = 2, and outcome x12 means that the

volume is split, so half is purchased from i = 1, and half from i = 2. The suppliers’ payoffs (given their types

θi and chosen outcome x) are described by the following table.

making a decision.
4For example, think of the municipality searching for concrete to build a new school, or the military selecting a producer of

a new fighter jet, or a tech startup choosing a cloud compute provider.
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ui(x, θi) x1 x12 x2

i = 1 θ1 = a1 100 50 0

i = 2
θ2 = a2 0 50 100
θ2 = b2 0 50 25

1. Describe the set of all social choice functions in this problem.

2. Is the following s.c.f. DSIC (dominant-strategy incentive compatible): f(a1, a2) = x12, f(a1, b2) = x1?

3. Which of the s.c.f.s that you identified in part 1 are DSIC?

4. Do you think the set of BIC (Bayesian incentive compatible) social choice functions is larger than the

set of DSIC s.c.f.s, or is it be the same?

Solutions

1. Supplier i = 1 has known type: Θ1 = {a1}. Supplier i = 2 has two possible types: Θ2 = {a2, b2}. So

type space Θ = Θ1 × Θ2 has two elements: Θ = {(a1, a2), (a1, b2)}. A s.c.f. is a function that maps

every type profile θ ∈ Θ to an outcome x ∈ {x1, x12, x2}. This means there is a total of 2 · 3 = 6 type

profiles. They are listed in Table 1 below.

2. Supplier 1 has known type, and so has no freedom to report a different type. We thus only need to

check that for every θ2 ∈ {a2, b2}, supplier 2 has no incentive to deviate to reporting a different type

θ̂2:

u2 (f(a1, a2), a2) ≥ u2 (f(a1, b2), a2) ⇐⇒ u2 (x12, a2) ≥ u2 (x1, a2) ⇐⇒ 50 ≥ 0,

u2 (f(a1, b2), b2) ≥ u2 (f(a1, a2), b2) ⇐⇒ u2 (x1, b2) ≥ u2 (x12, b2) ⇐⇒ 0 ≥ 50.

The second condition is violated: when the true type is θ2 = b2, supplier 2 actually prefers to report

θ̂2 = a2 instead of their true type. We conclude that this s.c.f. is not DSIC.

3. Applying the test from the previous part to all possible s.c.f.s, we get the following table.

s.c.f.
DSIC

f(a1, a2) f(a1, b2)
x1 x1 ✓
x1 x12 ×
x1 x2 ×
x12 x1 ×
x12 x12 ✓
x12 x2 ×
x2 x1 ×
x2 x12 ✓
x2 x2 ✓

Table 1: Different social choice functions and their implementability

4. Set of BIC s.c.f.s coincides with the set of DSIC s.c.f.s in this problem. Supplier 1 has no choice

of report, and the IC conditions for supplier 2 are the same under DSIC and BIC implementation

concepts, amounting to

u2 (f(a1, a2), a2) ≥ u2 (f(a1, b2), a2)

u2 (f(a1, b2), b2) ≥ u2 (f(a1, a2), b2) .
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And since the constraints that f should satisfy to be DSIC and BIC, respectively, are the same, the

set of f that satisfy these constraints are also the same.

Problem 3: Screening

One application of mechanism design is to profit maximization when consumers have private information

about their valuations. One example of such a problem is second-degree price discrimination that you have

seen in Microeconomics II. The following is a variation of that, known as a “monopolistic screening” problem

(with two types) that you may have seen in game theory.

Suppose a seller-designer offers a single product for sale that he can produce at zero cost. She offers a menu

of pairs of quantities k ∈ [0, 1] and payments t ∈ R+ (for the whole amount k, not per unit). There is

one buyer with valuation θ ∈ {L,H} for the product, which is his private information. The seller’s belief

regarding θ is given by ϕ(H) = ϕ, ϕ(L) = 1− ϕ. The buyer’s preferences are given by ub(k, t, θ) = θk − t if

he buys the product and zero otherwise.

1. Explain why it is sufficient for the seller to offer a menu consisting of two items: (kH , tH) and (kL, tL).

2. Write down the seller’s problem of maximizing her expected profit subject to the buyer’s incentive

compatibility (IC) and individual rationality5 (IR) constraints for every θ, in terms of the model

primitives.

3. Derive the seller’s optimal menu ((k∗H , t∗H), (k∗L, t
∗
L)) by following the steps below.

(a) Show that if ((kH , tH), (kL, tL)) satisfy ICH and IRL, then they also satisfy IRH .

(b) Show that ((kH , tH), (kL, tL)) satisfy ICH and ICL only if kH ≥ kL.

(c) Show that if ((kH , tH), (kL, tL)) are such that kH ≥ kL and ICH binds (i.e., is satisfied with

equality), then they also satisfy ICL.

(d) Show that given all of the above, it is always optimal to choose ((kH , tH), (kL, tL)) in such a way

that ICH and IRL bind.

(e) Given all of the above, solve for the optimal menu ((k∗H , t∗H), (k∗L, t
∗
L)).

Solution

1. By the revelation principle, the problem can be solved by a direct revelation mechanism that asks the

consumer for his type and prescribes an outcome (k, t) in return. Since there are only two types of

the consumer, such a DRM will respond with either (kH , tH) or (kL, tL), depending on the consumer’s

report of θ. An equivalent (indirect) mechanism would, instead of asking the consumer to report his

type, simply offer him a choice between these two outcomes.

2. The problem looks as follows:

max
((kH ,tH),(kL,tL))

{ϕtH + (1− ϕ)tL}

s.t. (ICH) : θHkH − tH ≥ θHkL − tL,

(ICL) : θLkH − tH ≤ θLkL − tL,

(IRH) : θHkH − tH ≥ 0,

(IRL) : θLkL − tL ≥ 0.

5IR constraint is a condition that ensures the buyer is willing to participate in the mechanism, as opposed to walking away.
In this problem, a buyer is willing to participate in the mechanism if their expected utility from doing so is greater than the
utility they get from walking away (in which case they don’t get the item and don’t have to pay anything).
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3. Proceeding step by step:

(a) Consider the following chain of inequalities:

θHkH − tH ≥ θHkL − tL ≥ θLkL − tL ≥ 0.

The first inequality above is ICH , the second is satisfied since θH > θL, and the last one is IRL.

Hence if ICH and IRL hold, then θHkH ≥ 0, meaning that IRH holds automatically, and can be

ignored.

(b) Subtracting ICL from ICH , we get

θHkH − tH − (θLkH − tH) ≥ θHkL − tL − (θLkL − tL)

⇐⇒ (θH − θL)kH ≥ (θH − θL)kL

⇐⇒ (θH − θL)(kH − kL) ≥ 0.

Since θH > θL, we get that ICH and ICL together imply that kH ≥ kL.

(c) If ICH binds, then tH − tL = (kH − kL)θH . Plugging that into ICL gives:

θLkH − tH ≤ θLkL − tL

⇐⇒ θL(kH − kL) ≤ tH − tL

⇐⇒ θL(kH − kL) ≤ (kH − kL)θH

⇐⇒ (θH − θL)(kH − kL) ≥ 0.

(Same expression as above, but a slightly different implication behind it. Previously the idea was

that this condition was necessary for ICH and ICL to hold. Now the idea is if ICH holds with

equality, then the condition above is equivalent to ICL.)

Since θH > θL and it is assumed that kH ≥ kL, the condition above holds, hence ICL also holds.

(d) In part (a) we saw that IRH can be ignored because it is always satisfied by a menu that satisfies

the other constraints. In part (c) we saw that if the optimal menu is such that ICH binds, then

ICL can also be ignored. Let us consider a problem without IRH and ICL, and we will show

that ICH does indeed bind in the optimum, hence ICL is indeed satisfied.

max
((kH ,tH),(kL,tL))

{ϕtH + (1− ϕ)tL}

s.t. (ICH) : θHkH − tH ≥ θHkL − tL,

(IRL) : θLkL − tL ≥ 0.

Proceed by contradiction: suppose ICH is slack in the optimum (i.e., the optimal menu is such

that ICH holds with strict inequality). Then the seller could offer a different menu with a

slightly higher tH – this would yield higher expected profit, and both constraints would still be

satisfied, hence such a menu is strictly better, which contradicts the original menu being optimal.

Therefore, ICH can not be slack in the optimal menu. Similarly, if IRL is slack in the optimum,

then increasing tL and tH is a similar profitable deviation, yielding another contradiction.
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(e) Given all of the above, the problem can be re-stated as

max
((kH ,tH),(kL,tL))

{ϕtH + (1− ϕ)tL}

s.t. (ICH) : θHkH − tH = θHkL − tL,

(IRL) : θLkL − tL = 0,

kH ≥ kL.

This problem is much simpler than the original one. From IRL, we get tL = θLkL, and then from

IRH , we can express tH = θH(kH − kL) + θLkL. The problem is then equivalent to

max
(kH ,kL)

{ϕθH(kH − kL) + θLkL} ,

s.t. kH ≥ kL.

This is a linear maximization problem with linear constraints (remember also that kθ ∈ [0, 1]),

hence we’ll have a corner solution. There are three corners in the constrained set: (kH , kL) ∈
{(0, 0), (1, 0), (1, 1)}. It is easy to see that (0, 0) is dominated by (1, 0). Either of the other two

can be optimal depending on the parameters. Hence the optimal menu is given by:

((k∗H , t∗H), (k∗L, t
∗
L)) =

{
((1, θH), (0, 0)) if ϕθH ≥ θL,

((1, θL), (1, θL)) if ϕθH ≤ θL.

Problem 4: Screening 2

This is a marginally more difficult version of the previous problem. Once you understood the solution of the

previous problem, try to solve this one by following the same algorithm.

The Chicago Transit Authority (the organization in charge of the Chicago subway system) has decided that

it needs to do more to maximize its revenue. As such it has hired you to design its new price and service

scheme. There are two types of customers, High-class and Low-class. They have preferences over the fare

P and the degree of bad smell in the train car they ride in, denoted by B. They have told you that they

are able to charge different fares depending on the car a customer rides in (i.e., to have different classes of

service).

The type of a customer is not observable; the fraction of high-class customers is λ. Customers’ utility

functions are ui(P,B) = v − θiP − B, for i = H,L, where θL > θH > 0. All customers get utility

(normalized) of 0 from walking (their next best alternative) instead of taking the CTA train.

Making train cars smell bad is not costless (workers need to be hired to rub garbage on the seats): the CTA

incurs a cost of γB > 0 per customer who rides in a car that has smell level B.

1. Write down the problem you would solve for determining the CTA’s profit-maximizing scheme. Assume

throughout that the CTA cannot charge negative prices; i.e., that P ≥ 0. Assume also that the CTA

wants to serve both high and low class customers.

2. Determine the CTA’s profit-maximizing scheme. How does it depend on the parameters of the problem?
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Solution

1. Appealing to the Revelation Principle, the CTA’s problem can be written as:

max
(PL,BL)≥0,(PH ,BH)≥0

{
λ(PH − γBH) + (1− λ)(PL − γBL)

}
s.t. (IRL) v − θLPL −BL ≥ 0

(IRH) v − θHPH −BH ≥ 0

(ICL) v − θLPL −BL ≥ v − θLPH −BH

(ICH) v − θHPH −BH ≥ v − θHPL −BL.

2. Observe first that (IRH) is redundant since it is implied by (ICH) plus (IRL).

Observe next that (IRL) will bind: otherwise we could raise both PL and PH by some ε > 0 and not

violate any constraints, thereby raising profit.

Observe next that BH = 0. If not, then we can lower BH and raise PH so that θHPH + BH is

unchanged. This violates no constraints (since it raises θLPH +BH), but raises profit.

Let’s ignore (ICL) and check that it holds at the end. In this case, we must have (ICH) binding:

otherwise we could lower BL a little and raise profit. Hence, we see that (by rewriting the binding

IRL and ICH respectively)

PL =
v −BL

θL

PH = PL +
BL

θH
=

v −BL

θL
+

BL

θH

So the CTA should choose BL ∈ [0, v] to solve

max
BL

λ

(
v −BL

θL
+

BL

θH

)
+ (1− λ)

(
v −BL

θL
− γBL

)
.

This problem is linear, so the solution is to set BL = v if

λ · 1

θH
− 1

θL
> (1− λ)γ

and set BL = 0 if the opposite holds. Note that in the latter case, we have PL = PH = v
θL

, while

in the former case we have PH−PL > 0. (And don’t forget to verify that ICL holds in both cases.)

Also, observe that we are more likely to set BL = vwhen the fraction of high class consumers (λ)

is high and the cost of making train cars smelly (γ) is low.

Problem 5: Second-price auction

A seller (designer) has a single item for sale. There are i = 1, ..., N bidders. Every bidder i has a private

valuation θi, which the other players believe is distributed according to some c.d.f. Φi(θi). Suppose for

simplicity that beliefs Φi are such that all valuations are positive, θi > 0, and two players can never have

the same valuation: θi ̸= θj . An allocation rule in this setting is6 k : Θ → ∆({0, ..., N}), where ki(θ)

denotes the probability that bidder i gets the item when the reported type profile is θ. A transfer rule is

t : Θ → RN , where ti(θ) denotes how much bidder i must pay to the seller. Bidders have quasilinear utilities:

6Here, ∆({0, ..., N}) denotes the set of distributions on {0, ..., N}, meaning k(θ) = (k0(θ), ..., kN (θ)) with ki(θ) ∈ [0, 1] for

all i and θ, and
∑N

i=0 ki(θ) = 1 for all θ. Further, k0(θ) denotes the probability that the seller keeps (does not sell) the item.
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ui(k, t, θ) = θiki(θ)− ti(θ).

Define the efficient allocation rule k∗ as the one that maximizes the sum of bidders’ utilities ignoring transfers:

k∗(θ) ∈ arg max
k∈∆({0,...,N})

{
N∑
i=1

θiki

}

1. Calculate the efficient allocation rule.

Now consider a specific (indirect) mechanism: a second-price sealed bid auction. All bidders simultaneously

submit bids bi to the seller (without seeing what the others bid). The highest bidder then wins the object

and pays the second-highest bid b(2), so their utility is given by ui = θi − b(2). All other bidders get nothing

and pay nothing, so their utility is zero. Ties are broken randomly.

2. Show that bidding truthfully (bi = θi) is a weakly dominant strategy for every bidder i.

3. Conclude that the second-price auction implements the efficient allocation rule in dominant strategies.

5.1 Solution

1. It is immediate from the maximization problem that the efficient allocation rule k∗ is such that k∗i (θ) =

1 if θi > maxj ̸=i θj – i.e., bidder i has the highest valuation for the item, – and k∗i (θ) = 0 if θi <

maxj ̸=i θj .

2. For any i, let b−i denote the vector of bids of bidders other than i and bmax
−i the highest of these bids.

Let ui(bi, b−i, θi) denote the utility player i gets from bidding bi given others’ bids and own type. We

want to show that

ui(θi, b−i, θi) ≥ ui(bi, b−i, θi) (1)

for all i, bi, b−i, θi. Consider the following three cases.

(a) If bmax
−i > θi, then by bidding their own valuation, bidder i will lose, so ui(θi, b−i, θi) = 0. The

same is true for any bi < bmax
−i , so (1) holds for these bids. If instead i bids bi > bmax

−i , they win

the item and must pay bmax
−i , so in this case ui(bi, b−i, θi) = θi − bmax

−i < 0, and (1) holds again.

Bidding exactly bi = bmax
−i yields the same negative utility with probability smaller than one, and

utility zero otherwise, so the expected utility is negative in this case too.

(b) If bmax
−i < θi, then by bidding their own valuation, bidder i will win the item and have to pay

bmax
−i , so ui(θi, b−i, θi) = θi − bmax

−i > 0. The same is true for any bi > bmax
−i , so (1) holds for these

bids. If instead i bids bi < bmax
−i , they lose the auction, so in this case ui(bi, b−i, θi) = 0, and (1)

holds again. Bidding exactly bi = bmax
−i yields utility θi − bmax

−i with probability smaller than one,

and utility zero otherwise, which means (1) is satisfied.

(c) If bmax
−i = θi, then both winning and losing yield utility zero for i (since winning involves paying

bmax
−i ), hence (1) is satisfied for all bi.

3. From part 1, the efficient allocation rule gives the item to the bidder with the highest valuation. From

part 2 we know that the second-price auction has an equilibrium in (weakly) dominant strategies, in

which all bidders big truthfully. It is immediate that in this equilibrium, the bidder with the highest

valuation wins the item – i.e., the SPA DS-implements the efficient allocation rule.
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