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Introduction
- r

m Throughout the course we assumed the players have some private information that the
designer wants to extract

m But where does this information come from?
®m l.e.: what incentives do agents have to acquire info?
B Especially if they know the designer is going to exploit this knowledge?

m In the previous lecture (info design) we asked how the designer would prefer to inform the
players. But an obvious question is: what do the players want to learn?

m This lecture is a compilation from a variety of published and working papers, including
Asher Wolinsky's lecture notes. If you are interested in models of information acquisition,
see a recent survey by Mackowiak et al. [2023].

m Note: the notation in this slide deck is not very polished and may be confusing in places.



Grossman-Stiglitz paradox
_

m The efficient market hypothesis says that in
financial markets, all available information is already
incorporated into asset prices

m But then no single trader wants to investigate the
fundamental value of the assets

m But then how does information feed into the prices?
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m The efficient market hypothesis says that in
financial markets, all available information is already
incorporated into asset prices

m But then no single trader wants to investigate the
fundamental value of the assets

m But then how does information feed into the prices?

m This is known as the Grossman and Stiglitz [1980]
paradox.

m We've had examples where all private info is
extracted — so why would players bother acquiring
it?
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Example: Oil companies compete for mining rights, choose how much info to acquire about
the oil field richness.

m Players’ info/values would be correlated with the true state — the amount of oil in the field
— and so with one another’s, from the point of view of an unaware seller
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E.g.: you own a home, and some oil has been found under it. You don’t care how much oil is there,

you want to sell it either way.

m Otherwise might want the buyers to learn, since info increases total surplus — how to induce learning?



Grossman-Stiglitz vs Cremer-McLean

Example: Oil companies compete for mining rights, choose how much info to acquire about

the oil field richness.

m Players’ info/values would be correlated with the true state — the amount of oil in the field
— and so with one another’s, from the point of view of an unaware seller

m Seller’s interim best option is to extract all info & surplus via Cremer-McLean mechanism.

m Firms know they’ll get no surplus either way — so why bother learning?
m What would the seller prefer? Learning or no learning?

m If there are guaranteed gains from trade — probably don't care, expected price is the same either way.
E.g.: you own a home, and some oil has been found under it. You don’t care how much oil is there,
you want to sell it either way.

m Otherwise might want the buyers to learn, since info increases total surplus — how to induce learning?

m |l.e., designer only cares about info to the extent that it would affect the allocation — does not want
the players to acquire any info beyond that, since it would entail info rents (costly to designer)
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m Let’s start from the basics — how to model information?

B Info must be about “something”, so we need to define the “something” first.
m A probability space (9, B,P) consists of:

m set of states w € €,

B set of events F, where any event is a set of states:
any f € Fisaset f CQ

B a probability measure P over events in F.
m If that seems too abstract, it's good enough to think of the following special case:
B set of states is Q = [0, 1]

m set of events is a Borel o-algebra B([0, 1])
(think “set of all possible subsets of [0, 1] that we care about”)

B probability measure P is Lebesgue measure over B([0, 1])
(implying a uniform distribution: w ~ U[0, 1]).
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m Then any random variable 6 can be represented as a function 6 : Q — ©. So a probability
of any given realization 6, € © would be given by P {w | §(w) = 6x} =P {671(6x)}.
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m Then any random variable 6 can be represented as a function 6 : Q — ©. So a probability
of any given realization 6, € © would be given by P {w | §(w) = 6x} =P {671(6x)}.
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1 if 0,1/6
m Adiceroll 6 € {1,...,6} can be described as 6 = { ifw e [0,1/6],
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m Then any random variable 6 can be represented as a function 6 : Q — ©. So a probability
of any given realization 6, € © would be given by P {w | §(w) = 6x} =P {671(6x)}.
h ifw e [0,0.5],

m E.g., a coin flip 0 € {h, t} can be described as § =
t ifwe (051].

1 if 0,1/6
m Adice roll 6 € {1,...,6} can be described as § = { if w e [0,1/6],

m Why do we need this structure? To describe random variables that can be arbitrarily
correlated!



Partitions
1
m Example: Suppose the payoff-relevant state is 6y € {h, t}, equiprobable.

m Suppose an agent can receive a binary signal 6; € {u,d} s.t. P(u) = 0.5. How to
optimally design such a signal?
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Partitions

m Example: Suppose the payoff-relevant state is 6y € {h, t}, equiprobable.

m Suppose an agent can receive a binary signal 6; € {u,d} s.t. P(u) = 0.5. How to
optimally design such a signal?
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Partitions

m Example: Suppose the payoff-relevant state is 6y € {h, t}, equiprobable.

m Suppose an agent can receive a binary signal 6; € {u,d} s.t. P(u) = 0.5. How to
optimally design such a signal?
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Partitions

m Example: Suppose the payoff-relevant state is 6y € {h, t}, equiprobable.

m Suppose an agent can receive a binary signal 6; € {u,d} s.t. P(u) = 0.5. How to
optimally design such a signal?
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Conditional probabilities
L

® ...but this is not how we modelled information throughout this course?

m Well, it's true that you can capture all of this partitional structure via conditional
probabilities:

m Describe 6 in terms of distribution of its realizations, ®g € A®y (there's implicit conditioning on w),

m describe 07 in terms of distributions of its realizations conditional on realizations of 6p:
¢’1|00 € A©q, etc
m It is not, however, clear, in general, whether any collection of such conditional probabilities
yields a sane joint distribution. Further, conditional probabilities do not uniquely pin down
a partitional representation.
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How to rank information? — Garblings
1

m Next question: how to rank signal structures? What does it mean to be more informative?
m One option: a more informative signal contains all info from the less informative signal
(and maybe more). Formally:

m Definition: signal 6y is a garbling of 0y if P{wl|fy, 61} = P{wl|f:} for all w € Q and all
realizations 6y € ©q, 6, € O1.

®m In words, 6y conveys no additional information on top of 6;.
m So 01 is more informative than its garbling 6p.

m Note that this is not a complete ordering — we may be unable to compare two arbitrary
signal structures and say that one is necessarily more informative than another.

m E.g., in the figure above, we can’t compare signals’ informativeness (about w)
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m Next question: how to rank signal structures? What does it mean to be more informative?
m One option: a more informative signal contains all info from the less informative signal
(and maybe more). Formally:

m Definition: signal 6y is a garbling of 0y if P{wl|fy, 61} = P{wl|f:} for all w € Q and all
realizations 6y € ©q, 6, € O1.

®m In words, 6y conveys no additional information on top of 6;.
m So 01 is more informative than its garbling 6p.

Note that this is not a complete ordering — we may be unable to compare two arbitrary
signal structures and say that one is necessarily more informative than another.

m E.g., in the figure above, we can’t compare signals’ informativeness (about w)
m But can always say that a perfect signal 0,(w) = w Yw € Q is more informative than any other signal

B and that an uninformative signal 0,(w) = 0,(w’') Yw,w’ € Q is a garbling of any signal.



What does it mean to be a garbling? 1 — Partitions
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m Going back to partitions, note that every signal structure (or random variable) 6 defines a
partition of Q.

= Definition: signal structure 6 is coarser than 6y if 671 (61(w)) € 05 (Ao(w)) for all w € Q.
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What does it mean to be a garbling? 1 — Partitions

m Going back to partitions, note that every signal structure (or random variable) 6 defines a
partition of Q.

= Definition: signal structure 6 is coarser than 6y if 671 (61(w)) € 05 (Ao(w)) for all w € Q.

S-j““\ 1 '_’d—\'l-' I . —

l 71 Q

5131\ W{ 2 ___:(_Jl_Ju_quua_,—\

Here, signal [structure] 1 is coarser than signal 2.

m Proposition: 6 is coarser than 6, if and only if 6y is a garbling of 64
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A quick test: is signal 1 coarser than signal 27
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No! Set m below is not included in either d, or u above!



What does it mean to be a garbling? 2 — Conditional probabilities
1

If we turn to conditional probability representations, then we can phrase the condition as

follows:
Proposition (Blackwell’s conditions)

0o is a garbling of 0 if and only if 3z : ©; — AQq s.t.:

Oo(solw) = Y z(sols1)b1(s1lw) Ve € Q, 5 € Op.

51€01
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receives signal 6.
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Blackwell's Theorem
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Consider an agent with an arbitrary utility function u(x,w), who chooses some action/outcome
x € X in order to maximize their expected utility. Suppose the agent does not know w, but
receives signal 6.

Blackwell's Theorem

E [u(x*(0),w) | 61] = E[u(x*(0),w) | O] for all utility functions u
if and only if g is a garbling of 6;.

m Theorem says that in a decision problem (i.e., absent any strategic concerns), an agent
would always prefer a more informative (less garbled) signal.

m Hence if learning is free, agent always gets a perfect signal.

m In mechdesign environment, if learning is unobservable (to designer/other players), the
same holds true.

m But what if learning is costly? Actually, how to even impose a cost on information? 15
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m Note: this is a very active research area, and there's heated debate about answers to this question. |
present one answer here, but it is not universally accepted.



Putting a price on information
1

® What assumptions on information cost function are reasonable?

m Note: this is a very active research area, and there's heated debate about answers to this question. |
present one answer here, but it is not universally accepted.

m One approach: measure somehow the information H(¢) contained in belief ¢ € A(2), and
let the cost of a signal be proportional to the expected amount of information it adds:

C(0) = X+ [E[H(¢(9))] — H(¢0)]-
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m Then how should our measure H(¢) of information in belief ¢ look like?

m Say that we derive information ¢(P(E)) from the fact that event E C Q realized.
(Then we could define H(¢) = E [¢)(é(w))] when € is finite.)



How to measure information?
- r

m Then how should our measure H(¢) of information in belief ¢ look like?

m Say that we derive information ¢ (P(E)) from the fact that event E C Q realized.
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m Consider the three following (natural?) axioms:
Positivity: ¥(p) > 0 for any p € (0, 1).
Continuity: 1(p) is continuous in p.

Additivity — information from two independent events is the sum of informations:
if E1, E» C Q are independent, then ¢ (P{Ey N E>}) = Y(P{Er})) + w(P{E2}).
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m Then how should our measure H(¢) of information in belief ¢ look like?

m Say that we derive information ¢ (P(E)) from the fact that event E C Q realized.
(Then we could define H(¢) = E [¢)(é(w))] when € is finite.)
m Consider the three following (natural?) axioms:
Positivity: 1(p) > 0 for any p € (0,1).
Continuity: 1(p) is continuous in p.
Additivity — information from two independent events is the sum of informations:
if E1, E, C Q are independent, then ¥ (P{E; N E>}) = »(P{E1})) + v(P{E}).
m Claim: if the axioms above hold, then ¢)(p) = CIn(p) with C < 0.
Proof: from additivity, Vm, n € N: ¢(p") = m)(p) and ¢ (p%) = #w(p), so

¥ (pm) = Z¢(p). By continuity then, ¢(p?) = a)(p) Va € R, implying
Y(p) = ¢(e'” P) =1(e)Inp = Clnp. Positivity implies C < 0.



How to measure information? — Entropy
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m So with axioms above, ¥(p) « — In(p) is the amount of information contained in

probability p.

m And then H(¢) x E[¢(p(w))] = — >, ¢(w) In(¢(w)) is the amount of information in
belief ¢ (if € finite; let 0In0 = 0).

m This H(¢) is called Shannon entropy, it's a measure of uncertainty (high entropy = high
uncertainty).
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How to measure information? — Entropy
1

m So with axioms above, ¥(p) « — In(p) is the amount of information contained in
probability p.

m And then H(¢) x E[¢(p(w))] = — >, ¢(w) In(¢(w)) is the amount of information in
belief ¢ (if € finite; let 0In0 = 0).

m This H(¢) is called Shannon entropy, it's a measure of uncertainty (high entropy = high
uncertainty).

m We can model cost of signal 6 as the expected decrease in entropy:

C(0) = =M E[H(¢lw)] — H(¢o)

m A more general class of posterior-separable cost functions allows a wide(r) range of
possible ¥ (p).
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Entropy cost in decision problems
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Decision problems with learning
1

m Consider an agent with some utility u(x,6o), where 6y € Oy is the payoff-relevant state,
Op finite.

m Before choosing x, agent can choose signal structure ; subject to entropy cost C(61), so
the final payoff is

E [u(x(61), 00)] — C(61)

m What are the properties of the optimal signal 6,7

B see Mackowiak et al. [2023] for more details

21



Optimal learning
1

m Observation 1: learning any state perfectly (or excluding any state) is infinitely costly, so
never optimal = supp(61(w)) = O for all w.

m Observation 2: it is never optimal to acquire more than one signal per action. Thus, the
optimal signal is an action recommendation.

22
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Mechanism design with costly learning
1

m Consider a mechanism design problem with learning:
m Nature draws w € Q, unobservable to everyone
m Designer chooses some mechanism ' = (A, g)
m Each player i € {1, ..., N} privately chooses a signal structure 6; : Q — ©;
m Each player i privately observes signal realization 0; = 6;(w) and chooses a; € A;

m Outcome g(a) € X is realized.

m There is no unified theory yet, so here are some bits and pieces and tips and tricks,
following Ravid [2020], Mensch [2022], Larionov and Yamashita [2024]

24



Revelation principle?
L

m The first thing we learned in this course is the revelation principle. When types are
endogenous, we can't have that. Or can we?

m As usual, assume that designer can select eqm

m Say that designer can recommend a signal structure to each player

m Each player i would have an option of reporting one of these “recommended” signal
realizations #; € ©;

® Think that designer offers a menu of possible posterior beliefs ¢|6 € A(Q2) a player can report to the
mechanism. These are i's available actions.

m At the learnng stage, i's optimal signal structure produces at most one signal per action — a
“recommendation” of which action to take.

® In equilibrium, the suggested posteriors are exactly the same as those induced by the buyer’'s optimal
signal.

25



Incentive compatibility?
1

m Player i/ has two kinds of deviations:
Acquire a different signal structure than the suggested one

Misreport their signal realization

m Papers show that IC2 is typically not binding in mechanisms with learning; one mainly
needs to worry about ICL.

26



Individual rationality?
1

m If player i has an outside option U; from not participating in the mechanism, it is relevant
at two points in time:

i may refuse to acquire info and take U; instead

after observing 0;, i may refuse to report anything to the mechanism and take U, instead.

m Due to the latter, i's signal structure may include a recommendation to “run”.

27
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Screening with costly learning

m Thereze [2023] considers a screening problem, where a buyer can acquire info about their
valuation.

m The fundamental buyer's valuation 0q is binary: 6y € {Q, 9_}; producing a good is costly for
the seller-designer.
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Screening with costly learning
1

m Thereze [2023] considers a screening problem, where a buyer can acquire info about their
valuation.

m The fundamental buyer's valuation 0q is binary: 6y € {Q, 9_}; producing a good is costly for
the seller-designer.

m In the optimal mechanism, the buyer acquires a binary signal with posterior beliefs
0, € [Q, ﬂ

m Without learning, we had “no distortion at the top”: the high-valuation buyer was served
for sure (efficient); the low-valuation buyer was served with lower probability (distortion)

m With learning, allocations for both learned-types 6; are distorted downwards

m This is because seller must leave more rents to the buyer, to incentivize the buyer to not
learn more.

29
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m Mensch [2022] considers a Myerson screening problem, where buyer learns their valuation.

m The fundamental buyer’s valuation is g € ©g, where g is finite. Production is free for
the seller.
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Envelope representation?
L

m Mensch [2022] considers a Myerson screening problem, where buyer learns their valuation.

m The fundamental buyer’s valuation is g € ©g, where g is finite. Production is free for
the seller.

m He derives a sort of an envelope condition for the optimal menu {k, t(k), ¢(:|k)}, where k
is the trading probability, t(k) is the transfer/price, and ¢(-|k) € AOy is the buyer's
interim belief about their valuation conditional on acquiring info that results in k.

30



Correlating information

m Larionov and Yamashita [2024] explore a bilateral trade setting, where designer offers a
mechanism to a buyer and a seller

m The fundamental product quality is 8y € ©¢, where O is finite. Players’ valuations are
arbitrary functions vg(6p), vs(6o).
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Correlating information
1

m Larionov and Yamashita [2024] explore a bilateral trade setting, where designer offers a
mechanism to a buyer and a seller

m The fundamental product quality is 8y € ©¢, where O is finite. Players’ valuations are
arbitrary functions vg(6p), vs(6o).

m They show that efficiency requires that buyer & seller acquire perfectly correlated signals
about v. The designer can then use sort of a cross-verification mechanism, but must leave
rents to the players to incentivize them to learn.

m Larionov et al. [2023] and Jiang and Whitmeyer [2024] make similar points in auction
settings.

31



Conclusion

m Learning is fun

m Accounting for (costly) learning substantially changes the economic predictions of our
models

m There's still a lot to explore here!

32
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