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Done so far
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m Introduced basic notions and criteria:

m s.c.f.,, mechanism, implementation and implementability (DSIC, BIC),

m efficiency, individual rationality, budget balance.
m Covered some fundamental results in Mechanism Design:

m revelation principle (pretty universal),

m payoff/revenue equivalence (Euclidean model, slightly generalizable),

B necessary conditions for implementability (weak preference reversal, monotonicity)
m Learned to implement the efficient s.c.f.:

m DSIC: VCG;

m BIC: AGV, gVCG.



Today

m Finished with implementing efficient s.c.f.s
m Today will look at revenue maximization.

® Revenue-maximizing mechanisms called “optimal” in the literature (meaning optimal for the
designer), after Myerson’s “optimal mechanism”.

m gVCG was optimal in the class of efficient mechanisms. Now we remove the restriction on

allocations.
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Two types (Monopolistic Screening)



Setting 1: one buyer, discrete type
1

m Starting simple (Monopolistic Screening / Second-Degree Price Discrimination).

m Seller-designer can set quantities k and prices t for product, has production costs
c(k) = k*(= —wo(k)).

B As usual, designer has no private information. “Informed principal” is a difficult problem.

m There is one buyer with valuation 6 € {L, H}, private info. Prior probabilities are
o(H) = ¢, ¢(L) =1 —¢.
m Buyer's preferences Euclidean: wuy(x,0) = 0k — ¢

m Is this a Euclidean model?



Monopolistic Screening

m As usual, look at DRM I = (©, (k, t)). Notation-wise, let kg = k(6) and ty = t(6).

m Seller's problem (contrary to before, we can now choose k in addition to t.)

2 2
max {¢(tn — kiy) + (1= 9)(tr — i)} show ICyy and IR, imply IRy:

sit. (ICH):  Opky —ty > Ok — t1
(ICL) : Orky —ty < Ork. — tL
(IRW): Ouky —ty >0
(IR)): Oikp—t,>0
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Monopolistic Screening
1

m As usual, look at DRM I = (©, (k, t)). Notation-wise, let kg = k(6) and ty = t(6).

m Seller's problem (contrary to before, we can now choose k in addition to t.)

max {¢(t ~ ki) + (1= o)t — ki) } show ICyy and IR, imply IRy:

show ICy and ICy imply ky > ki;

show ky > k; and binding ICy imply ICy;
show /ICy and IR, bind;

(IRu) : Onky —ty >0 solve for optimal (k, t).

(IR): O,k —1t. >0

s.t. (/CH) T Opky — ty > Ok — t,
(ICL) o Orky —ty < 0O. k. — 1t



Monopolistic Screening: lessons
1

Lessons:

offering a menu may be optimal to extract value from buyers;



Monopolistic Screening: lessons
1

Lessons:
offering a menu may be optimal to extract value from buyers;

explains weird non-linear prices you can often encounter;



Monopolistic Screening: lessons
1

Lessons:
offering a menu may be optimal to extract value from buyers;
explains weird non-linear prices you can often encounter;

quantity is distorted downward for low type



Monopolistic Screening: lessons
1

Lessons:
offering a menu may be optimal to extract value from buyers;
explains weird non-linear prices you can often encounter;
quantity is distorted downward for low type

high type gets information rent (pays below valuation);



Monopolistic Screening: lessons
1

Lessons:
offering a menu may be optimal to extract value from buyers;
explains weird non-linear prices you can often encounter;
quantity is distorted downward for low type
high type gets information rent (pays below valuation);

IR must bind for at least some type.
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Interval of types (Optimal Mechanism)



Setting 2: one buyer, interval of types
1

m Designer/seller has one indivisible item for sale. Chooses menu including probability of
sale k() € [0,1] and payment t(6) given report @, no costs for simplicity.

® Nothing changes from when k was quantity, since everyone is risk-neutral.
m Buyer has valuation # ~ ®[0, 4], private info.
m Buyer's preferences Euclidean: v, = 0k — t.

m Buyer's outside option yields utility zero: U,(¢) = 0.
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Solution approach

Show: if 8" < 0" then k(6") < k(0"). (use the two ICs)
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Optimal Mechanism
L

Solution approach
Show: if 8" < 0" then k(6") < k(0"). (use the two ICs)

Get the envelope representation U,(0) = Up(0) + fog k(s)ds
(BIC and DSIC ERPs yield the same expression, since there is only one player).

Recall that Uy(0) = 0k(0) — t(0), so
EUs = E[t(0)] = Eqg [0k(0) — Uy(6)]

— K, [ek(e) - /09 k(s)ds} — U,(0)
. /Oé 0Kk(0)$(0)d0 — /f AO K(s)6(6)dsd — Up(0)

0 -0
- / 0k(0)$(0)d0 — / (1 — ®(0))k(0)d0 — Up(0)
0_ JO

e 1—d(0)
- [ o) (e— o )as(e)de—ubm)




Optimal Mechanism: integration by parts
1

Integration by parts under the microscope:

/05 (/00 k(s)d5> (0)do =

- /O K(0)d0 — /0 ®(0)k(0)d0

(0) /0 "ke)ds| |~ /0 " Fo)k(0)do

6=0

- /§(1 — &(6))k(6)d0
0



Optimal Mechanism: pinning U, (0)
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o (9 1-9(0)

EU, = Eo[t(0)] = /O k(0) ) ) #(6)do — Uy(0)

m To choose: allocation rule k() and Up(0) (pins transfers).
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1

0 _
BU. = Ealt(0)] = [ ko) (- 25" ) e0)a

m To choose: allocation rule k() and Up(0) (pins transfers).
m What do with U,(0)?

m Want to minimize since decreases revenue.

m Gotta be Up(0) > 0 to satisfy IR for § = 0. Other types?

B Recall Up(0) = Up(0) + foe k(s)ds and k(0) > 0, so Up(0) > U,(0) for all 6,

hence Up(0) = U,(0) = 0 is optimal (max revenue, all IR hold, IR binds for § = 0).
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Optimal Mechanism: optimal k
L

EU, = /09 k(0) (9 - 1;(?;;9)) #(0)do

m What do with k?

m Define virtual surplus VS(0) := 0 — 1-%(0)

#(0) -

1 if V. >0;
® Pointwise maximization: k() = ifVS(0) 2 0
0 if VS(6) < O;

B Remember: k(0) is only implementable if it is monotone! Sufficient condition: VS(0) increasing in 6.

B In the end, if V5(0) is increasing in 0, the optimal mechanism is given by k(0) as above and t(0)
that can be computed from ERP.



Optimal Mechanism: Virtual Surplus
L

m What is virtual surplus?

m It reflects information rents we have to pay to high types to incentivize them to reveal type honestly.
m Sufficient for increasing VS(#) is increasing hazard rate %.
The assumption we usually live with; need suitable distribution ®(8).
m What do if “unlucky” and ®(6) is such that VS is sometimes decreasing?
m “lroning”: find monotone k(#) that is “closest” to the unconstrained optimum.

m E.g. if VS is globally decreasing then some constant k is optimal.

B There is a kind of a general approach to this, but it's difficult, see Kleiner, Moldovanu, and Strack
[2021].



Optimal Mechanism: non-linear preferences
L

m Note that linear preferences v(k, ) = 0k are not necessary for any of this.
m With general v you will not get a nice decomposition k - VS in the integral.
m But you can still obtain something like

0 —
| (vtwton.0) - 202 220 oyan

and define V5(0) = v(k(0),0) — av(/gg)79) . 1;?;()9) (note it's slightly different from how we
defined VS in the linear case)

m And you can still find the optimal k by maximizing this virtual surplus (and it still has to
be monotone)



Optimal Mechanism: Lessons
L

m Incentives are costly.

m If 0 is an attractive type to imitate, have to distort 0's allocation k(0) compared to first-best
(full-info benchmark).

m (That’s why k(@) is not distorted.)

m Even though gains from trade always present, optimal to commit to not sell to low types
to charge high types more.

m Distribution ¢ matters: if more high types then focus on them and sell with lower
probability to the low types.

m It will most of the time be optimal to have some cutoff rule: k(0) = I{# > A} for some 0.

® Things become more interesting in multi-item case, see Manelli and Vincent [2007]
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Optimal Mechanism: Example
L

m Derive the optimal mechanism when 6 ~ U]0, 1].
_ 1-0(0) _

m VS(0) =0 - 1500 =29 -1,

hence optimal k() = I{¢ > 0.5}. Payments?

Us(0) = Up(0) + [7 k(8)d6 = max{0 — 0.5, 0},

so t(f) = 0.5-1{0 > 0.5}. Fixed price is optimal!

Actually cannot do much better than fixed price in this simple trade model.

m Maximizing [ k(0)VS5(0)d0, which is linear in k(0) for all 6. So we'll typically have either a cutoff
rule, or constant rule — unless V5(0) non-monotone.

m Consequence of Euclidean payoffs. More interesting results with non-linear payoffs.
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Many buyers (Optimal Auction)



Setting 3: many buyers, interval of types
1

m Designer/seller has one indivisible item for sale. Chooses allocation k(0) € A(N) and
payment profile t(#) € RN given report profile 6.

m Buyers j € {1,..., N} have valuations 0; ~ i.i.d.(D[O,(;,-], private info.
® Independence of 6; is important, since we rely on revenue equivalence / ERP
m Buyer's preferences Euclidean: v, = 0,k — t;

m What is the optimal BIC mechanism that maximizes seller's expected profit?



Optimal Auction
L

m We are effectively designing the optimal auction.
m Selling the good to the highest bidder is efficient (assuming higher-value buyers bid more),

B so all standard auction formats — first-/second-price, Dutch, English — are revenue-equivalent! (buyer
with value zero gets zero)

m To get more profit often have to depart from efficiency, e.g. by
B setting reservation price,

m discriminating buyers (even if they are ex ante identicall).

20



Optimal Auction
L

m From the perspective of the individual bidder, things are not much different from
single-player model, just take expectations over 6_;:

(9,) = Eeﬂ.t,'(e,', 9,,')

(0;) =Eg_ ki(0;,0_;)

(9,) = IEQH.U,'(X(G;7 9_,'), 9,)

i

X~

= Monotonicity: if 8/ < 6/ then k;(6}) < k;(0).

m Envelope representation:
0
L_/,'(g,') = U,'(O) -‘r-/ k,'(S)dS.
0



Optimal Auction: Seller
L

EUs = Eqy lz t,-(H)]
- ZEQ [0:ki(0) — U:(0)]
_ZE9 [6:ki(6;) — Ti(6))]

= oo (- 557 - 000

ki(6,)
[Eo, ki(0:) VSi(6:) — Ui(0)]

R
R

22



Optimal Auction
L

m As before, set U;(0) = 0.
EUs = Eq,ki(0;)VSi(67)

=Ep > _ ki(0)VSi(0)
m Pointwise maximization: for any 6, give the item to / with the highest VS;(0):

ki(0) =

1 if i = argmax; VSj(0)
0 otherwise

(break ties as you wish)

23



Optimal Auction: Conclusions
L

m Naive (pointwise) solution works only if the resulting allocations satisfy monotonicity.
m If they don't: 777
m Ironing is even more difficult because of joint constraint on allocations: ", k;(0) < 1.

m Allocations are inefficient:
m Inefficient withholding when 6; > 0 but VS; < 0 (and i € arg max; VS;).

® VS; depend on respective distr-ns of 0;'s — asymmetric players are treated asymmetrically.

m In symmetric case, the optimal auction can be implemented as one of standard formats
(FPA, SPA, APA, Dutch, English) with reserve price.

24



Optimal Contests
L

m Related topic: optimal contests.
m N contestants exert effort, have private abilities.

B Designer's goal: maximize total effort (e.g. maximize the amount of science that competing reserach
teams produce).

B How should designer choose size and number of prizes; winning rules etc?

m Will not cover in this class.

25
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