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Exercises for Lecture 2 (M1):

Revelation Principle, DSIC Mechanisms

Problem 1: Søndre campus

There are currently talks at KU about moving the Faculty of Social Sciences from the Kommunehospitalet

that we occupy now to Søndre campus, where some other faculties are currently located.1 The costs and

benefits of such a move are currently being evaluated. Some, however, see this whole discussion as a

bargaining maneuver in the upcoming negotiations with the firm that owns the Kommunehospitalet and

leases it to the university – a credible threat of leaving may help the university bargain a better lease rate.

Your mission is to frame this choice of whether SAMF should move as a mechanism design problem. The

goal of the mechanism is to extract the information about costs and benefits of the potential move from the

relevant parties. In particular, answer the following questions within this setting:

1. Who is the designer?

2. What is the outcome in this setting? (Do we have access to transfers? Is the set of allocations k given

by simply K = {move,no move} or is it more multifaceted?)

3. Who are the players?

4. What information do the players have that is relevant to determining the optimal outcome/allocation?

5. How would you model the players’ utility functions? (Give a concrete example.)

6. What criteria or conditions should the mechanism satisfy?

7. What would be the desirable outcome/allocation rule that you would want to implement with such a

mechanism? How can you check whether this rule is, in fact, implementable?

8. If you allowed for transfers: how would you proceed with designing transfers that support the chosen

allocation rule? (You do not need to actually derive the transfers.)

9. How would your mechanism work in the real world, in terms of organization and logistics?2

NOTE: treat this as a real-life assignment from the university officials. Your goal is to give the best possible

answer to the question they ask, NOT to frame the problem in the simplest way possible. That said, you

should still be realistic and try to set up the problem in a way that would be tractable and doable given the

resources available to a committee responsible for this decision.

Solution

This is an open-ended question, so many answers are possible. Below is one example.

1. The designer is the university leadership (rector), possibly proxied by a “committee on moving”.

2. It feels somewhat strange to include monetary transfers in this problem. While it may be fine to pay

small amounts to students and faculty for completing a survey or pay departments to compile a report

on a given issue, making these payments contingent on responses to provide incentives is the weird

part, which will likely not be well accepted. Therefore, an outcome is simply an allocation.

1News article from Uniavisen (in Danish): https://tinyurl.com/y4uwrefe.
2Example: “all faculty, staff, and students must post a note on the door of their office which would contain their report of

something; a dedicated person will walk around and enter responses in an excel sheet, which will then be used to determine
the outcome”.
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An allocation, however, is much richer than just a binary decision. In case of a move we would also

need to decide how to allocate the spaces on Søndre campus between the departments and faculties,

whether to build new lecture halls (or force the students and faculty to commute to CSS or Nørre

campus for classes), whether and how to merge the duplicating departments, etc.

3. The set of players should include anyone who possesses information relevant to the outcome, and has

preferences regarding the outcome, which could prevent them from communicating this information to

us truthfully. In this problem, this includes:

• Students, faculty, and staff, who all have private valuations for the move.

• Future students, for the same reason. We obviously cannot include future students in our mecha-

nism because we do not know who they are, so the next best option is to let the current students

speak on their behalf.

• The university’s building administration, which knows how much room capacity SAMF requires,

how much capacity is available on Søndre campus, how much the exploitation of these rooms costs

on both campuses, and how much it would cost to build more lecture halls on Søndre campus.

It is not immediate that there exists any conflict preventing this information from being openly

communicated, but there could be some. E.g., I believe that at the moment, these administrations

exist separately on different campuses, so they may be opposed to merging or, conversely, they

may actively prefer the merge.

• Some university departments (e.g., IT) can better estimate the cost of the actual process of

moving. Potential conficts of interest are as above.

• The firm which owns the Kommunehospitalet and leases it to the university – it likely has some

understanding of what its outside option is in case the university leaves, and the company would

have to find new tenants for this property. Note that it makes a lot of sense to allow monetary

transfers with this particular player.

• ...

4. See above.

5. For concreteness, let us suppose from this point onwards that the costs of the move can be evaluated

by internal departments without any conflict and need for a mechanism. Then our set of players is

narrowed down to two groups: stakeholders (students, faculty, and staff) and the propertyowner firm.

The firm’s utility can be modelled as:

uf (x, θ) =

{
−tf if no move;

θf if move,

where again the firm’s type θf is its outside option relative to continuing the current agreement, and

tf is the negative of the change in lease that KU pays for the Kommunehospitalet. The firm does not

care about the details of the move if it happens.

With stakeholders it is a little more difficult, since the details of the allocation now matter. What we

can do is assume that the allocation can be split into a number of aspects l ∈ {1, ..., L} and each kl
can be represented as a number. E.g., one aspect is “will all classes be held in the same place after

the move”, another is “if yes, will this place be Søndre campus”, another is “will there be place for a

student bar”, etc. If we take this approach, then stakeholder i’s type can be represented as a vector

of valuations for every aspect θi = (θi,1, θi,2, ..., θi,L), and then the utility can be approximated as

ui(x, θ) =
∑L

l=1 klθi,l.

6. We obviously want the mechanism to be incentive compatible, at least in the Bayesian sense.3 Indi-

3Large number of players is one excuse to switch from DSIC to BIC: heuristically, the more possible type profiles θ−i other
players collectively have, the less important every single individual case is for i’s expected utility at the point where they are
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vidual rationality is not an issue, once you realize that “not responding to a survey” is just a kind

of response. While students and staff and faculty have an outside option of leaving KU and applying

to another university, this is likely a costly option. You can, however, make a case for IR being a

desirable condition to satisfy for future students (so they choose KU over other universities), as well

as the firm that owns Kommunehospitalet (depending on how you model its utility function). Finally,

since transfers are not a part of the problem (except when dealing with the firm), budget balance in

not a particularly relevant requirement.

7. The simplest answer: the desired allocation rule kd(θ) should maximize the stakeholders’ welfare,

i.e., the sum of utilities net of the costs borne by the university. Note that this is not the efficient

allocation according to the standard definition, since it ignores the firm’s well-being. You can also

present various social choice arguments saying that the sum of utilities is not the best measure to

use here. E.g., depending on the university’s priorities, you may want to assign different weights to

students’ well-being versus that of the faculty.

After calculating this allocation rule, you can realize that this problem fits the general setting (but not

the quasilinear or Euclidean, since we do not allow for transfers), so you can use weak monotonicity

of the outcome function/allocation rule to test for implementability. (Again, weak monotonicity for

the general setting, not the weak monotonicity for the Euclidean setting, even though k is a vector of

numbers!)

8. I went with a mix, allowing transfers to/from the firm, but not the stakeholders. If the firm’s utility

entered the objective function, we could use the (g)VCG transfers to align the firm’s objective with

the derired objective. However, the firm’s utility is not a part of the objective function, so the VCG

does not work as is. There is no set recipe for this case, but you can employ the first principles to

come up with a mechanism that may not necessarily be best, but is good enough. In particular, the

firm must be unable to change its transfer without also altering the allocation rule.

The simplest (but not the only!) way to achieve this is to give the firm no power over rent. E.g., the

university can determine its willingness to pay for the Kommunehospitalet given stakeholders’ reports,

and then present the firm with a take-it-or-leave-it offer.

9. It is probably easiest to set up an online survey for the stakeholders, and no issues should arise there.

Negotiations with the firm are a more subtle matter, since using a direct revelation mechanism may not

be appealing for the firm if it does not believe in the university’s power to commit to the mechanism,

or if it thinks its report may be used against it in future negotiations. A take-it-or-leave-it-offer as

suggested above solves this issue.

Problem 2: Screening

One application of mechanism design is to profit maximization when consumers have private information

about their valuations. One example of such a problem is second-degree price discrimination that you have

seen in mikro II. The following is a variation of that, known as a “monopolistic screening” problem (with

two types) that you may have seen in game theory.

Suppose a seller-designer offers a single product for sale that he can produce at zero cost. She offers a menu

of pairs of quantities k ∈ [0, 1] and payments t ∈ R+ (for the whole amount k, not per unit). There is

one buyer with valuation θ ∈ {L,H} for the product, which is his private information. The seller’s belief

regarding θ is given by ϕ(H) = ϕ, ϕ(L) = 1− ϕ. The buyer’s preferences are given by ub(k, t, θ) = θk − t if

he buys the product and zero otherwise.

1. Explain why it is sufficient for the seller to offer a menu consisting of two items: (kH , tH) and (kL, tL).

making a decision.
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2. Write down the seller’s problem of maximizing her expected profit subject to the buyer’s incentive

compatibility (IC) and individual rationality (IR) constraints for every θ, in terms of the model prim-

itives.

3. Derive the seller’s optimal menu ((k∗H , t∗H), (k∗L, t
∗
L)) by following the steps below.

(a) Show that if ((kH , tH), (kL, tL)) satisfy ICH and IRL, then they also satisfy IRH .

(b) Show that ((kH , tH), (kL, tL)) satisfy ICH and ICL only if kH ≥ kL.

(c) Show that if ((kH , tH), (kL, tL)) are such that kH ≥ kL and ICH binds (i.e., is satisfied with

equality), then they also satisfy ICL.

(d) Show that given all of the above, it is always optimal to choose ((kH , tH), (kL, tL)) in such a way

that ICH and IRL bind.

(e) Given all of the above, solve for the optimal menu ((k∗H , t∗H), (k∗L, t
∗
L)).

Solution

1. By the revelation principle, the problem can be solved by a direct revelation mechanism that asks the

consumer for his type and prescribes an outcome (k, t) in return. Since there are only two types of

the consumer, such a DRM will respond with either (kH , tH) or (kL, tL), depending on the consumer’s

report of θ. An equivalent (indirect) mechanism would, instead of asking the consumer to report his

type, simply offer him a choice between these two outcomes.

2. The problem looks as follows:

max
((kH ,tH),(kL,tL))

{ϕtH + (1− ϕ)tL}

s.t. (ICH) : θHkH − tH ≥ θHkL − tL,

(ICL) : θLkH − tH ≤ θLkL − tL,

(IRH) : θHkH − tH ≥ 0,

(IRL) : θLkL − tL ≥ 0.

3. Proceeding step by step:

(a) Consider the following chain of inequalities:

θHkH − tH ≥ θHkL − tL ≥ θLkL − tL ≥ 0.

The first inequality above is ICH , the second is satisfied since θH > θL, and the last one is IRL.

Hence if ICH and IRL hold, then θHkH ≥ 0, meaning that IRH holds automatically, and can be

ignored.

(b) Subtracting ICL from ICH , we get

θHkH − tH − (θLkH − tH) ≥ θHkL − tL − (θLkL − tL)

⇐⇒ (θH − θL)kH ≥ (θH − θL)kL

⇐⇒ (θH − θL)(kH − kL) ≥ 0.

Since θH > θL, we get that ICH and ICL together imply that kH ≥ kL.
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(c) If ICH binds, then tH − tL = (kH − kL)θH . Plugging that into ICL gives:

θLkH − tH ≤ θLkL − tL

⇐⇒ θL(kH − kL) ≤ tH − tL

⇐⇒ θL(kH − kL) ≤ (kH − kL)θH

⇐⇒ (θH − θL)(kH − kL) ≥ 0.

(Same expression as above, but a slightly different implication behind it. Previously the idea was

that this condition was necessary for ICH and ICL to hold. Now the idea is if ICH holds with

equality, then the condition above is equivalent to ICL.)

Since θH > θL and it is assumed that kH ≥ kL, the condition above holds, hence ICL also holds.

(d) In part (a) we saw that IRH can be ignored because it is always satisfied by a menu that satisfies

the other constraints. In part (c) we saw that if the optimal menu is such that ICH binds, then

ICL can also be ignored. Let us consider a problem without IRH and ICL, and we will show

that ICH does indeed bind in the optimum, hence ICL is indeed satisfied.

max
((kH ,tH),(kL,tL))

{ϕtH + (1− ϕ)tL}

s.t. (ICH) : θHkH − tH ≥ θHkL − tL,

(IRL) : θLkL − tL ≥ 0.

Proceed by contradiction: suppose ICH is slack in the optimum (i.e., the optimal menu is such

that ICH holds with strict inequality). Then the seller could offer a different menu with a

slightly higher tH – this would yield higher expected profit, and both constraints would still be

satisfied, hence such a menu is strictly better, which contradicts the original menu being optimal.

Therefore, ICH can not be slack in the optimal menu. Similarly, if IRL is slack in the optimum,

then increasing tL and tH is a similar profitable deviation, yielding another contradiction.

(e) Given all of the above, the problem can be re-stated as

max
((kH ,tH),(kL,tL))

{ϕtH + (1− ϕ)tL}

s.t. (ICH) : θHkH − tH = θHkL − tL,

(IRL) : θLkL − tL = 0,

kH ≥ kL.

This problem is much simpler than the original one. From IRL, we get tL = θLkL, and then from

IRH , we can express tH = θH(kH − kL) + θLkL. The problem is then equivalent to

max
(kH ,kL)

{ϕθH(kH − kL) + θLkL} ,

s.t. kH ≥ kL.

This is a linear maximization problem with linear constraints (remember also that kθ ∈ [0, 1]),

hence we’ll have a corner solution. There are three corners in the constrained set: (kH , kL) ∈
{(0, 0), (1, 0), (1, 1)}. It is easy to see that (0, 0) is dominated by (1, 0). Either of the other two
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can be optimal depending on the parameters. Hence the optimal menu is given by:

((k∗H , t∗H), (k∗L, t
∗
L)) =

{
((1, θH), (0, 0)) if ϕθH ≥ θL,

((1, θL), (1, θL)) if ϕθH ≤ θL.

Problem 3: Screening 2

This is a marginally more difficult version of the previous problem. Once you understood the solution of the

previous problem, try to solve this one by following the same algorithm.

The Chicago Transit Authority (the organization in charge of the Chicago subway system) has decided that

it needs to do more to maximize its revenue. As such it has hired you to design its new price and service

scheme. There are two types of customers, High-class and Low-class. They have preferences over the fare

P and the degree of bad smell in the train car they ride in, denoted by B. They have told you that they

are able to charge different fares depending on the car a customer rides in (i.e., to have different classes of

service).

The type of a customer is not observable; the fraction of high-class customers is λ. Customers’ utility

functions are ui(P,B) = v − θiP − B, for i = H,L, where θL > θH > 0. All customers get utility

(normalized) of 0 from walking (their next best alternative) instead of taking the CTA train.

Making train cars smell bad is not costless (workers need to be hired to rub garbage on the seats): the CTA

incurs a cost of γB > 0 per customer who rides in a car that has smell level B.

1. Write down the problem you would solve for determining the CTA’s profit-maximizing scheme. Assume

throughout that the CTA cannot charge negative prices; i.e., that P ≥ 0. Assume also that the CTA

wants to serve both high and low class customers.

2. Determine the CTA’s profit-maximizing scheme. How does it depend on the parameters of the problem?

Solution

1. Appealing to the Revelation Principle, the CTA’s problem can be written as:

max
(PL,BL)≥0,(PH ,BH)≥0

{
λ(PH − γBH) + (1− λ)(PL − γBL)

}
s.t. (IRL) v − θLPL −BL ≥ 0

(IRH) v − θHPH −BH ≥ 0

(ICL) v − θLPL −BL ≥ v − θLPH −BH

(ICH) v − θHPH −BH ≥ v − θHPL −BL.

2. Observe first that (IRH) is redundant since it is implied by (ICH) plus (IRL).

Observe next that (IRL) will bind: otherwise we could raise both PL and PH by some ε > 0 and not

violate any constraints, thereby raising profit.

Observe next that BH = 0. If not, then we can lower BH and raise PH so that θHPH + BH is

unchanged. This violates no constraints (since it raises θLPH +BH), but raises profit.

Let’s ignore (ICL) and check that it holds at the end. In this case, we must have (ICH) binding:

otherwise we could lower BL a little and raise profit. Hence, we see that (by rewriting the binding
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IRL and ICH respectively)

PL =
v −BL

θL

PH = PL +
BL

θH
=

v −BL

θL
+

BL

θH

So the CTA should choose BL ∈ [0, v] to solve

max
BL

λ

(
v −BL

θL
+

BL

θH

)
+ (1− λ)

(
v −BL

θL
− γBL

)
.

This problem is linear, so the solution is to set BL = v if(
λ

1− λ

)(
1

θH
− 1

θL

)
−

(
1

θL
+ γ

)
> 0,

and set BL = 0 if this inequality is reversed. Note that in the latter case, we have PL = PH = v
θL

,

while in the former case we have PH − PL > 0. (And don’t forget to verify that ICL holds in

both cases.) Also, observe that we are more likely to set BL = vwhen the fraction of high class

consumers (λ) is high and the cost of making train cars smelly (γ) is low.

Problem 4: Judicial design

A suspect is in custody, accused of murder. If he goes to trial he will either be convicted or acquitted. If he

is convicted he will be sent to prison for life giving him a payoff of −1. If he is acquitted he goes free and

has a payoff of 0. The district attorney can offer plea bargains: allowing the defendant to plead guilty in

return for a lighter sentence. In particular, for any r ∈ (0, 1), the DA can offer a reduced sentence which, if

accepted, would give the defendant a payoff of −r.

The defendant is privately informed about his chances for acquittal at trial: θ ∈ [0, 1] is the defendant’s

privately known probability of acquittal. If the defendant does not enter into a plea bargain with the DA he

will go to trial and be convicted with probability 1− θ.

Consider the mechanism design problem where the DA is the principal and the defendant is the agent. A

social choice function is a mapping f : [0, 1] → {trial} ∪ (0, 1) where f(θ) = trial means that type θ will go

to trial and f(θ) = r ∈ (0, 1) means that type θ accepts a plea bargain giving him a sentence with payoff

−r. DA thinks θ has full support on [0, 1].

1. Write down the inequalities that characterize whether some given social choice function f is incentive-

compatible for the defendant.

2. What is the set of all incentive-compatible social choice functions? You can proceed in the following

steps:

• Show that in any IC f at most one plea bargain r is available.

• Show that f must be of cutoff type, with the suspect taking the plea if θ < θ̄ and going to court

otherwise.

• Find the value of r that makes the cutoff s.c.f. f incentive compatible given some cutoff type θ̄.

• Combine all of the above to characterize the set of implementable f .
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Solution

By going to trial a defendant of type θ receives (expected) utility of −(1 − θ), while from accepting a plea

bargain his utility is −r. Fix some s.c.f. f(θ). Let Θp be the set of types who are offered a plea bargain

f(θ) = r(θ), and Θt be the set of types who are meant to go to trial: f(θ) = trial (Θt ∪Θp = [0, 1]). Then

the IC constraints are given by:

for all θ ∈ Θp : − r(θ) ≥ −r(θ′) for all θ′ ∈ Θp

and− r(θ) ≥ −(1− θ);

for all θ ∈ Θt : − (1− θ) ≥ −r(θ′) for all θ′ ∈ Θp.

We will characterize the set of IC social choice functions by a series of claims.

claim 1 f(·) has at most one value on the real line.

Proof: if f(θ1) < f(θ2) θ1, θ2 ∈ [0, 1] then a defendant of type θ2 gains higher utility by declaring θ1
(as −f(θ1) > −f(θ2). This implies the mechanism is not IC for θ2.

claim 2 f(·) has a cutoff at some θ̄. i.e. f(θ) =

{
r if θ < θ̄

T if θ ≥ θ̄
(value at θ̄ is not unique)

Proof: assume θ′ > θ, f(θ) = T, f(θ′) = r. By IC for θ we know that −r ≤ −(1 − θ). However, as

−(1− θ′) > −(1− θ), this implies that −(1− θ′) > −r and we don’t have IC for θ′.

claim 3 r = 1− θ̄

Proof: r ≤ 1− θ̄ follows directly from IC for type θ̄, while r ≥ 1− θ̄ follows from IC of type θ̄ + ϵ. If

type θ̄ were strictly better off by accepting the plea bargain, by continuity and monotonicity of benefit

of trial, type θ̄ + ϵ would also strictly prefer the plea bargain, contradicting IC for that type.

These four claims imply that for any (r, θ̄) s.t. r = 1− θ̄ the social choice function

f(θ) =

{
r if θ < θ̄

T if θ ≥ θ̄

is incentive compatible.

Problem 5: Second-price auction

There is a single item being sold via a second-price sealed bid auction. There are i = 1, ..., n bidders.

Every bidder i has a private valuation θi, which the other players believe is distributed according to some

c.d.f. Fi(θi). All bidders simultaneously submit bids bi to the seller (without seeing what the others bid).

The highest bidder then wins the object and pays the second-highest bid b(2), their utility is then given by

ui = θi − b(2). All other bidders get nothing and pay nothing, so their utility is zero.

1. Show that bidding truthfully (bi = θi) is a weakly dominant strategy for every bidder i.

2. Conclude that the second-price auction implements the efficient allocation rule in dominant strategies.

5.1 Solution

Part 1. Let’s prove that for any θi and for any b−i bidding bi ̸= θi is weakly dominated. There are two

cases:
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1. i bids bi > θi

(a) If there exists bj > bi then ui(bi, b−i) = ui(θi, b−i)

(b) If bi is the highest bid, let bj be the second highest. If θi < bj < bi then ui(bi, b−i) = θi − bj <

0 = ui(θi, b−i). If bj < θi < bi then again ui(bi, b−i) = ui(θi, b−i).

2. i bids bi < θi

(a) If bi is the highest bid, then ui(bi, b−i) = ui(θi, b−i)

(b) Some other bj is the highest bid. Then if bi < bj < θi, ui(bi, b−i) = 0 while ui(θi, b−i) ≥ 0; in all

other cases ui(bi, b−i) = ui(θi, b−i)

Thus, indeed bidding the true value θi is a weakly dominant strategy.

Part 2. The efficient allocation rule k∗(·) = (k∗1(·), ..., k∗n(·)) (where ki ∈ [0, 1] is the probability that i gets

the item) is such that for every profile of valuations v = (θ1, ..., θn): k∗(v) ∈ argmaxk(v){
∑n

i=1 θiki(v)}. It

is easy to see that the efficient allocation rule then prescribes giving the item to the bidder with the highest

valuation θi: k
∗
i (v) = I{θi > θj ∀j} (coupled with any tie-breaking rule).

From part 1 we know that the second-price auction has an equilibrium in (weakly) dominant strategies,

in which all bidders big truthfully. It is immediate that in this equilibrium, the bidder with the highest

valuation wins the item – i.e., the SPA DS-implements the efficient allocation rule.

Page 9 of 9


