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Problem setup



Quasilinear Preferences
N

Assumption: Quasilinear setting/Transferable utility

Instead of allowing all possible preferences, adopt a special structure.
Instead of x € X describing everything related to outcome, split it into:
m k(0) € K, “real/material outcome” a.k.a. allocation
m t(0) € RV, transfers/payments

Instead of arbitrary u;(x,6) focus on quasilinear preferences:

ui(x,0;) = vi(k,0;) — t;

m S.cf. is 7(0) = (k(0), t1(0), ..., tn(0))



Quasilinear Preferences
N

m Common interpretation: transfers=payments. This comes with a bunch of assumptions:
B Monetary transfers always available,
m individual utility is linear in money (risk-neutrality),

® marginal social utility of money is constant across types and people and independent of allocation.

m All three are sometimes restrictive, the latter two especially.

m However, monetary payments are not necessary! Anything that / cares about that is not
directly included in the allocation k can be used to adjust i's utility as needed!

m 's time, i's effort, promises to i, etc



Efficient Implementation
L

m A frequent question: “Dr.Professor, how can we as society implement the efficient
outcome?"”

m Reminder: efficient outcome x*(0) = (k*(0), t*(0)) is

N N
x*(0) = arg max ui(x,6;) = arg max vi(k,0;) — t;
() =argmoe (.0 =argmax S (k) ~ ]

m Transfers just reallocate utility across agents, so focus on efficient allocation k*(6):
N

k*(0) = arg mfxz vi(k, 0;)

i=0

m Note that we can include i = 0 into welfare calculations. This can capture designer's
preferences or any social costs/benefits not captured by individual agents (e.g., cost of
implementing a public project)



Efficient Implementation
L

= How do we do that?
m We already know that it's enough to consider direct revelation mechanisms.

B We have the desired allocation rule k*, but we can design the transfers t — the problem is not just
“check whether s.c.f. x* is IC", but “is there such t that k* is IC?”

m What we as designers want:

N
max Z vi(k, 0;)
i=0

m What agent / wants:
max v;(k,0;) — t;

m How to reconcile the two?



This slide deck:
!

VCG



VCG Mechanism: intro
!

m We now introduce the VCG mechanism that DSIC-implements the efficient allocation. We
shall do it in a few steps.

m NOTE: while the broad idea behind the VCG mechanism is the same everywhere, the
exact definition of the VCG mechanism differs in different sources (textbooks).



VCG Mechanism: Groves' Transfers
!

m More formally, the problem of agent i of type 6; is:

mgx{vi(k*(éia 0-:),0;) — t:(0;, 94)}

i

m Try Groves' transfers:

t°(0) = - (Z w(k*(@,—,ﬁ,—),@)) + hi(6-7)

J#i
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VCG Mechanism: Groves' Transfers
!

m Agent's problem is now

max ¢ S (k" (61,6-),6;) — hi(6-7)

0i JjEN

m Every agent i chooses report 0; to maximize welfare!
m Optimal to report true 0;,

m for any 0_;.

m Crucial that h;(f_;) does not depend on /’s report.



VCG Mechanism: Example
L

Example (Moon Base)

m V citizens decide whether to build a Moon base which costs ¢
m citizen i has private valuation 6; for the base and quasilinear utility
(so if base built then v; = 6;, otherwise v; = 0)

m What are Groves' transfers? (Take h;(6_;) =0.)

m The incentives are there... but at what cost?



VCG Mechanism: Clarke Term
!

m A suggestion for h;(6_;) made by Clarke (“pivot mechanism”):
hi(0-1) =D vi(k~'(0-7),)),
J#i
where k7'(6_;) € arg mfx; vi(k,0;).
J#i

m NOTE: it is the default allocation rules k=/(6_;) that each textbook defines differently (or
replaces with other things). My version is quite robust, but you can use other default rules
if they make more sense in a given setting (so long as the rule for / is independent of 6;)

m Resulting VCG transfers:

tVC6(g) = — Z vi(k*(0;,0-:),0;) | + Z vi(k='(6-1),6;)

JF#i JF#i



VCG Mechanism: Final Transfers
!

£C0) == | Y vk (01,0-0),0) | + > vi(kT'(0-).9))

J#i #i

m What's the big idea?
B Agent i receives the externality his report imposes on others (mind the signs).
m /'s transfer is non-zero only if his presence affects the decision k.

m Note that / cannot misreport 6; and get lower transfer without also changing k.

m What are VCG transfers in the Moon Base question?



VCG Mechanism: Example
L

Example (Auction)

m One indivisible item to be allocated among N bidders.
m Bidder /'s valuation is ¢; (private info).
m What is the VCG mechanism?

m VCG mechanism is the second-price auction (efficient and DSIC).

m Also known as the Vickrey auction (the V in VCG).



VCG aftermath
!

m We have an easy recipe to implement the efficient outcome in dominant strategies.

m Any problems?



This slide deck:
!

Individual Rationality and Budget Balance



Feature example: bilateral trade
L

Example (Bilateral Trade)

m One indivisible good.

m Two agents: buyer and seller.

m Private valuations 0y, 05 € [0, 1] resp.

m Find the VCG transfers (take no trade as efficient when 65 = 6p).



Feature example: bilateral trade
L

m If you did everything correctly, you'll get

tYC(0) = 0, - 1{0; < 0}
tsVCG(a) = 9,5 ' H{05 > eb}



Feature example: bilateral trade
L

m If you did everything correctly, you'll get

tYC(0) = 0, - 1{0; < 0}
tsVCG(a) = 9,5 ' H{05 > eb}

m The seller pays to keep the good and doesn’t get anything from selling it. Good deal?



Individual rationality
1

m In many settings can't force players to participate in mechanism:

Definition (IR)
A mechanism T is:
m interim individually rational if Eg_, [u;(6;,0—;)] > U;(6;) for all 6;;
m ex post individually rational if u;(0;,0_;) > U;(6;) for all 6.
m U;(0;) is the outside option of type 6;
m (in bilateral trade: U (0s) = 65s)
m expectation means that distribution of 8s now matters!

B (whether a mechanism is DSIC does not depend on the distr-n; but whether it is IR does)



Detour — brief review
- r

m ex ante = i knows nothing;
m ex interim = | knows 6;;
m ex post =/ knows 6; and 0_;.

m We'll mostly work with interim IR;

ex post IR is also sometimes used in the literature.

20



Budget balance
1

m VCG for bilateral trade example is not IR for seller (outside option = keep the good).

21



Budget balance
1

m VCG for bilateral trade example is not IR for seller (outside option = keep the good).

m If we want mechanism to be IR, easy solution is to decrease t;(6) by a lot, for all 6.

m But that's expensive — want mechanism to be budget balanced:

21



Budget balance
1

m VCG for bilateral trade example is not IR for seller (outside option = keep the good).

m If we want mechanism to be IR, easy solution is to decrease t;(6) by a lot, for all 6.
m But that's expensive — want mechanism to be budget balanced:
Definition (BB)

B Mechanism T is ex ante budget balanced if Eq [Z,N:1 t,-(G)] >0;
®m Mechanism T is ex post budget balanced if Z,N:1 tj(0) > 0 for all 6.

m Mechanism is exactly BB if the above hold with equalities.

m If [ is ex post BB then it is ex ante BB (prove).



IR vs BB
1 ___________________________________________________________________________

m Fundamental tension between IR and BB.

m We want to ask the following question (within our bilateral trade example, in particular):

]
Does there exist a mechanism that is: efficient, DSIC, IR, BB?



IR vs BB
1 ___________________________________________________________________________

m Fundamental tension between IR and BB.

m We want to ask the following question (within our bilateral trade example, in particular):

]
Does there exist a mechanism that is: efficient, DSIC, IR, BB?

m We know VCG was not IR, but that’s just one mechanism. Can we say whether any other
mechanisms satisfy all requirements?

m Not in most general case*, but all examples (trade, auction, pub.project) fit a much narrower model
where we can.

® *though see Prop 23.C.5 in MWG



This slide deck:
!

Payoff Equivalence
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The Euclidean model
!

Assumption: Euclidean setting

Make the following assumptions on top of quasilinearity:
m 0 cO; = [Q,,é,-] C R, full support;
m k€ K CRVM, K compact, convex set;
[ | u;(x, 9,’) =0;k; — t;.

m I'll call the above the Euclidean model (not standard name).

We'll derive Payoff-equivalence as a necessary condition for [ to be DSIC in Euclidean
model. It's a cool property on its own and will help answer the question about BB/IR

mechanisms later.

Given I, denote U,'(H;,Q,;) = uj (X(Q,’,G,;LH;).



Monotonicity
1

m Assume [ is a direct mechanism (or consider its direct equivalent).
= Play a bit with i’s IC (truthtelling constraint): for any i,6;,0;,0_;,

Ui(0;,0_) > u; (x(@,-,H_,-),G,->

25



Monotonicity
1

m Assume [ is a direct mechanism (or consider its direct equivalent).
= Play a bit with i’s IC (truthtelling constraint): for any i,6;,0;,0_;,
Ui(6;,0-5) > u; (x(81,60-),6)

= 0iki(0;,0—;) — t:(0;,0_;)
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Monotonicity
1

m Assume [ is a direct mechanism (or consider its direct equivalent).

= Play a bit with i’s IC (truthtelling constraint): for any i,6;,0;,0_;,

=0;ki(0;,0_;) — ti
791((0,,0 I)_tl

i)
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(0i,0-1) + (9 — 9) ki(:,6_)

25



Monotonicity
1

m Assume [ is a direct mechanism (or consider its direct equivalent).
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—i)
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Monotonicity
1

m Assume [ is a direct mechanism (or consider its direct equivalent).

= Play a bit with i’s IC (truthtelling constraint): for any i,6;,0;,0_;,

= 0;ki(0;,0_) —
=0;ki(0;,0_;) — t;

—i)
0_i) + (9 - 9) ki(6:,0-;)

= U;(éi,e_;) + (9,’ — é,) ki(éi76—i)

Ui(0i,0-;) > u; (X(é,-,e_, 794>
(6,
(6,

m In the end:

Ui(0;,0-;) > Ui(0:,0_)) + (9i - éi) ki(8,6_5).

m Similarly, type 6; should not want to report 6;:

Ui(0;,0_7) > Ui(0;,0_) + (éi - 9;) ki(6;,0_;).

25



Monotonicity
1

m Combining the two for 6; > 0;, we get

Ui(0:,60-;) — Ui(6:,6-)) A

ki(0;,0—;) > = > ki(0;i,0-)), 1
(6:6-1) ) (0.6-1) 1)

26



Monotonicity
1

m Combining the two for 0; > 0:, we get

Ui(0:,60-;) — Ui(6:,6-)) A

ki(0;,0—;) > = > ki(0;i,0-)), 1
(6:6-1) ) (0.6-1) 1)

m meaning k;(0;,0_;) > k,-(6’A,-,9,,-) — allocation rule must be monotone.
m DSIC: “Those who value things more should get more things.”
m Monotonicity is necessary for f to be DSIC in Euclidean settings.

m From monotonicity we can build up to payoff equivalence, the second cool result in
mechanism design (after revelation principle, not monotonicity).

26



Payoff Equivalence
1

m k;(0;,0_;) is monotone in 0;, hence continuous a.e.: limg _g, k,-(é,-,H_,-) = ki(6;,0-;).

27



Payoff Equivalence
1

m k;(0;,0_;) is monotone in 0;, hence continuous a.e.: limg _g, k,-(é,-,O_,-) = ki(6;,0-;).

m Together with the big inequality (1) this means that a.e. we have
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Payoff Equivalence
1

m k;(0;,0_;) is monotone in 0;, hence continuous a.e.: limg _g, k,-(é,-,O_,-) = ki(6;,0-;).
m Together with the big inequality (1) this means that a.e. we have

oU;(6;,0-;) ~im Ui(0;,60_;) — Ui(6:,6_;)
90; 6i—0; 0; — é,-

= ki(0;,0—)).
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Payoff Equivalence
1

m k;(0;,0_;) is monotone in 0;, hence continuous a.e.: limg _g, k,-(é,-,O_,-) = ki(6;,0-;).
m Together with the big inequality (1) this means that a.e. we have

oU;(6;,0-;) ~im Ui(0;,60_;) — Ui(6:,6_;)
90; 6i—0; 0; — é,-

= ki(0;,0—)).

m So if k(0) is integrable in ; (e.g. if it's bounded) then for all 6;

-0;
U,‘(@,‘,Q,,‘) = U,'(Q,-,ef,') + / k,‘(S,Q,;)dS
Jo

(Note that the lower limit does not need to be §; — it can be any other type.)

m This is the envelope representation of payoffs a.k.a. Mirrlees condition. From it we can

immediately get revenue equivalence.
27



Payoff Equivalence

N
Theorem (Payoff Equivalence for DSIC Euclidean mechanisms)

In the Euclidean setting, for any two DSIC DRMs with x = (k,t) and x’ = (k’, t) respectively:
if k(0) = k'(0) for all 8 then t;(0) = t/(0) + ci(0—;) for all 6 for some c;(0_;).



Payoff Equivalence
| 0000000000000

Theorem (Payoff Equivalence for DSIC Euclidean mechanisms)

In the Euclidean setting, for any two DSIC DRMs with x = (k, t) and x’ = (k’, t") respectively:
if k(0) = k'(0) for all 8 then t;(0) = t/(0) + ci(0—;) for all 6 for some c;(0_;).

Proof. Given the envelope representation, invoke the definition of U;:
0;
Vi(k*(9i79,,'), 9,) — t,-(9,-,9,,-) = U,'(Q,-7 97,') + / k,'(579,,')d5.
9

The above holds in any DSIC DRM. Take the two mechanisms in the statement, fix some 0, i,
express ti(#) and t/(#) from the above, and you will get that

t:(0) = i (0) — Ui(8;,0-) + U;(8;,6-),

where U; and U! denote the eqm utilities in the two mechanisms. The last two terms only
depend on i and 6_; (but not 6;), hence denoting them as ¢;(f_;) concludes the proof. O



Payoff Equivalence: intuition
1

m Given allocation k (doesn't have to be efficient), utility of one type (usually “lowest” type)
pins down utils of all types of player i given fixed 6_;.

29



Payoff Equivalence: intuition
1

m Given allocation k (doesn't have to be efficient), utility of one type (usually “lowest” type)
pins down utils of all types of player i given fixed 6_;.

m Equivalently, have only one degree of freedom for i's transfers given 6_;.

® Reminds you of anything?

29



Payoff Equivalence of Efficient Mechanisms
1

m Recall Groves' transfers: efficient k* can be impl-d in DS by

ti(0) = — (Z Vj(k*(9ia9i)791)> + hi(0-)

JF#

_— (Z @kj((),-.ﬁ,-)) + hi(6-)

J#i

for some h;(0_;).

30



Payoff Equivalence of Efficient Mechanisms
1

m Recall Groves' transfers: efficient k* can be impl-d in DS by

6(0) = — | D vi(k*(60:,0-1),6)) | + hi(6-7)

JF#

_— (Z @kj((),-.ﬁ,-)) + hi(6-)

J#i

for some h;(0_;).

m Payoff equivalence implies that efficient k* in a Euclidean model can ONLY be
DS-implemented by some Groves' mechanism.

30



Payoff Equivalence: Beyond Euclidean
1

Both monotonicity and payoff equvalence hold beyond the Euclidean setting:
m various forms of monotonicity are necessary and sufficient for DSIC in quasilinear setting;

m payoff equivalence of DSIC mechanisms is generalizable beyond Euclidean (but you cannot
get to general quasilinear setting);
m see Borgers for details:
m ch.5: single-player problems,

m ch.7: DSIC results building on ch.5.

31



Payoff Equivalence (DSIC): Conclusion
|

m So what does payoff equivalence tell us?

m Efficient allocation k* can only be implemented using Groves’ transfers...
m ..but h;j(6_;) still provides a lot of flexibility!
m So it's hard to know whether VCG is the best mechanism or there are others.

m So let us weaken our implementation concept to obtain a stronger version of payoff
equivalence.

32



Back to bilateral trade
- r

m Remember how this detour started?
Example (Bilateral Trade)

m One indivisible good.

m Two agents: buyer and seller.

m Private valuations 6p, 05 € [0, 1] resp.

m Is there an efficient, DSIC, ex post IR, ex post BB mechanism?

Can we answer this question now?
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Payoff Equivalence in BIC
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Payoff Equivalence in BIC

We now show payoff equivalence for BIC mechanisms in the Euclidean setting.
New assumption: types are independent across players: 6; L 6_; for all i.

Theorem (Payoff Equivalence for BIC mechanisms)

For any two BIC DRMs with x = (k,t) and x" = (k’, t") resp.:
if ]E()il.k,'(e,'., 9,,') = E()f,.k,’(é,-, 0,,') for all i, 9,‘,
then Ee_it,'(e,', 9,;) = E(;_it,{(g,’, 97,') + h; for all i,0; for some h;.

m As before, implies that for given k (any, not just the efficient) we only have one degree of
freedom for ¢;(0),

B now “just one” instead of “just one given 6_;".



Payoff Equivalence in BIC. Proof
1

m Let
0:(6:,0;) = Ey._, [u,- (x(é,-,e_,-), o,-) |o,-}
=, [e,k,-(é,-,e,,-) —t (é,-,e,,-) |9,-] .

(do not confuse with U; in Euclidean model for DS.)
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Payoff Equivalence in BIC. Proof
1

m Let
0:(6:,0;) = Ey._, [u,- (x(é,-,e_,-), o,-) |o,-}
=, [e,k,-(é,-,e,,-) —t (é,-,e,,-) |9,-] .

(do not confuse with U; in Euclidean model for DS.)

m Take full derivative w.r.t 0; at é; =0

d U;(H;,@i) = 301(91,9:')

d70’_ 89; + 7Ui(9i>0i)

5 00;

0;=0;

The first term is zero because truthful report é,- = #; maximizes LNJ,-(GA,-,Q,-).
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Payoff Equivalence in BIC. Proof
1

m Then by the Fundamental Theorem of Calculus (with U;(6;) = U;(6;,6))

Iy
_ - i dU;
0:(6;) = 0:(6;) + / Yi (s, 5)ds
b, d;

0;
— G(0) + / Eo_, [ki(s, 6-1)|6:] ds,

meaning that k and U;(6;) pin down utilities U;(6;) for all 6;. O

m Remark: here we used a different argument to get dU"c(ig’;_’e") =Eq_, [k(0;,0-1)|0i]
compared to DSIC proof. Either argument can be used in both proofs.

37



Payoff Equivalence in BIC. Generalization
1

The proof is nice and illustrative in Euclidean setting.
Krishna and Maenner [2001] present a more general result for the following setting:

m quasilinear setting;
m independent types;
m ©; C RX is a convex set for every i

m v;(k,0;) is convex in 6; for all /.

38



Ex ante and ex post revenue in BIC
L

One cool thing about BIC mechanisms is that ex post BB is free if you have ex ante BB:

Theorem

In a quasilinear setting, for every direct mechanism I' = (©, (k, t)) that is BIC and ex ante BB,
there exists a direct mechanism I = (©, (k’, t)) which is:
m BIC,
m ex post BB,
m equivalent to I in the sense of: k'(6) = k() for all  and Eg_,t/(0;,0_;) = Eg_,t;(0;,60_;)
for all i and ;.

For proof, see Prop 6.3 & Prop 3.6 in Borgers.



This slide deck:
!

[ ¢VCG

40



Generalized VCG
!

m As it turns out, VCG can be (interim) IR with a slight modification... And it will be (ex
ante) revenue-maximizing among all such mechanisms in that case.

m Enter generalized VCG [Krishna and Perry, 2000].

41



Generalized VCG

m As it turns out, VCG can be (interim) IR with a slight modification... And it will be (ex
ante) revenue-maximizing among all such mechanisms in that case.

m Enter generalized VCG [Krishna and Perry, 2000].

m Define least charitable type 0; as
y N
b; € arg mio Eog_, Z vi(k™(0i,0-i),0;) — U;(6))

=0

(expectation taken w.r.t the common prior ¢ € A(©))

41



Generalized VCG
!

GVCG mechanism is a DRM with the efficient allocation k*(6) and payments
tVEC0) =D vilk*(6,6-),6) + vi(k* (6;,0-7),61)—
J#i

=3 ik (0:,0-1),0;) — Us(6)

J#i
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Generalized VCG
!

GVCG mechanism is a DRM with the efficient allocation k*(6) and payments
tVEC0) =D vilk*(6,6-),6) + vi(k* (6;,0-7),61)—
J#i

= > vk (05,0-7),6;) — Us(B)

J#i
Has the usual Groves' term (the third one); the other three guarantee IR,
m The first term is similar to Clarke’s term, but with k*(0;,6_;) instead of k—/(6_;)

m 279 and 4% is the net utility that LCT G; gets from participating in the mechanism — need
to also pay it to all other types

42



Generalized VCG
!

Theorem (gVCG, part 1)

In a quasilinear model, gVCG is:
efficient (by construction),
DSIC,

interim IR.

Prove DSIC on your own (analogous to VCG).



Generalized VCG. Proof: IIR
!

Interim expected utility for 6; is

N N
LD vk (0),6) = > vi(k*(6:,6-4).6)) 16; | + Ui(6)
=0 J=0 0;=0;
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Generalized VCG. Proof: IIR
!

Interim expected utility for 6; is

N N
By, [Z vi(k*(8),6;) = D vi(k*(6:,6-4). ;) |9] +Ui(6:) > Ui(6)

J=0 =0 0;=0;

The inequality above is the IR constraint, and it holds since

N
b € arg min By, [Z vi(k*(6:,6_),6)) U,-(0,-)|0,-]
Jj=0

44



Generalized VCG
!

Theorem (gVCG, part 2)

In a Euclidean model with independent players' types, gVCG is:
m efficient (by construction),
m DSIC,
m interim IR;
m maximizes expected revenue among all mechanisms that are BIC, IIR, and implement the
efficient k*.

If gCVG is not ex ante budget balanced, there does not exist a
{EFF + BIC + IIR + ex ante BB} mechanism (so no ex post BB either).



Generalized VCG. Proof: revenue maximizing in Euclidean
1

m Given revenue equivalence, just need to show we cannot decrease h; for any player w/o
violating IIR.

46



Generalized VCG. Proof: revenue maximizing in Euclidean
1

m Given revenue equivalence, just need to show we cannot decrease h; for any player w/o
violating IIR.

m Decreasing h; only possible if IR slack for all types of /.
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Generalized VCG. Proof: revenue maximizing in Euclidean
1

m Given revenue equivalence, just need to show we cannot decrease h; for any player w/o
violating IIR.

m Decreasing h; only possible if IR slack for all types of i.
m But IR binds for 8;: U;(8;) = U,(6;) (verify). O

46



Application: Bilateral Trade
L

Example (Bilateral Trade (revisited))

m One indivisible good.

m Two agents: buyer and seller.

m Private valuations 6, 0s ~ i.i.d.U[0, 1] resp.
|

Is there an effietents BSICexpostHR—expost BB efficient, BIC, interim IR, ex ante BB

mechanism?

m No, because gVCG is not BB. (This is the Myerson-Satterthwaite Theorem)

47
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AGV mechanism
!

m One last mechanism before we go — in case you care about BB, but not IR.

m Let

i:l(al) =Ky, Z Vj(k*(eh 0-i), aj)lel

J#i

be the “expected externality” imposed by i on everyone else.

m AGV transfers are given by

£V (g) = z

ﬁff

49



AGV mechanism
!

m One last mechanism before we go — in case you care about BB, but not IR.
m Let
E(0:) =Eo_, | > vi(k™(6:,0-7),0,)l6;
J#
be the “expected externality” imposed by i on everyone else.

m AGV transfers are given by

7V (0) = 1 O E(0) - B0,

m The second term is the averaged version of Groves' transfer,

m the first term is h;(0_;) which balances the budget.
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AGV mechanism
!

Theorem (AGV)

In a quasilinear model, AGV is:
m efficient (by construction),
m exactly ex post BB,
m BIC.

Not necessarily IR. :(



AGV mechanism. Proof: budget balance.
1

m Observe that

S V) =Y | g S E6) -~ E(6)

i i J#i

m For any j, RHS has:
B N — 1 terms of the form 15 (6;), and
® 1 term of the form —£(6;).

m These cancel out and exhaust all terms in the sum. Therefore, 3", tA¢Y(0) = 0 for all 6 =
ex post exact budget balance.

m Note: if the mechanism needs to raise some fixed sum for any @, it can be treated as fo.
If the mechanism needs to raise some sum that is dependent on 6 (e.g. fund a public project iff it is
built), AGV cannot handle that.
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AGV mechanism. Proof: BIC.
!

m If i reports ; then receives utility

R N 1 .
Eo_, [Vi(k*(01,0-1),0:) + > vi(k*(0:,0-),0,)|0: | — N1 > )
#i #i
m Last term indep of HA,-;
bracket max-d by 9; = 0; for every 0_; (since k* efficient),
so max-d by 6; = 6; in expectation as well.
m Reporting truth is a best response to —i reporting truthfully

= truthful reporting is a BNE of the mechanism. O
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Bottom line
- r

m We have two mechanisms that implement the efficient k* in quasilinear model:
m AGV: BIC + BB,
m gVCG: DSIC + IIR.

m In the Euclidean model, gVCG is also [ex ante-]revenue-maximizing among BIC+IIR
mechanisms.

m Revenue equivalence is powerful, but needs more structure than just quasilinear model.
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