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Quasilinear Preferences

Assumption: Quasilinear setting/Transferable utility

Instead of allowing all possible preferences, adopt a special structure.
Instead of x ∈ X describing everything related to outcome, split it into:

k(θ) ∈ K , “real/material outcome” a.k.a. allocation

t(θ) ∈ RN , transfers/payments

Instead of arbitrary ui (x , θ) focus on quasilinear preferences:

ui (x , θi ) = vi (k , θi )− ti

S.c.f. is f (θ) = (k(θ), t1(θ), ..., tN(θ))
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Quasilinear Preferences

Common interpretation: transfers=payments. This comes with a bunch of assumptions:

Monetary transfers always available,

individual utility is linear in money (risk-neutrality),

marginal social utility of money is constant across types and people and independent of allocation.

All three are sometimes restrictive, the latter two especially.

However, monetary payments are not necessary! Anything that i cares about that is not
directly included in the allocation k can be used to adjust i ’s utility as needed!

i ’s time, i ’s effort, promises to i , etc
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Efficient Implementation

A frequent question: “Dr.Professor, how can we as society implement the efficient

outcome?”

Reminder: efficient outcome x∗(θ) = (k∗(θ), t∗(θ)) is

x∗(θ) = argmax
x

N∑
i=0

ui (x , θi ) = argmax
(k,t)

N∑
i=0

[vi (k, θi )− ti ]

Transfers just reallocate utility across agents, so focus on efficient allocation k∗(θ):

k∗(θ) = argmax
k

N∑
i=0

vi (k, θi )

Note that we can include i = 0 into welfare calculations. This can capture designer’s

preferences or any social costs/benefits not captured by individual agents (e.g., cost of

implementing a public project)
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Efficient Implementation

How do we do that?

We already know that it’s enough to consider direct revelation mechanisms.

We have the desired allocation rule k∗, but we can design the transfers t – the problem is not just

“check whether s.c.f. x∗ is IC”, but “is there such t that k∗ is IC?”

What we as designers want:

max
N∑
i=0

vi (k , θi )

What agent i wants:

max vi (k , θi )− ti

How to reconcile the two?
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VCG Mechanism: intro

We now introduce the VCG mechanism that DSIC-implements the efficient allocation. We

shall do it in a few steps.

NOTE: while the broad idea behind the VCG mechanism is the same everywhere, the

exact definition of the VCG mechanism differs in different sources (textbooks).
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VCG Mechanism: Groves’ Transfers

More formally, the problem of agent i of type θi is:

max
θ̂i

{
vi (k

∗(θ̂i , θ−i ), θi )− ti (θ̂i , θ−i )
}

Try Groves’ transfers:

tGi (θ) ≡ −

∑
j ̸=i

vj(k
∗(θi , θ−i ), θj)

+ hi (θ−i )

Agent’s problem is now

max
θ̂i

vi (k
∗(θ̂i , θ−i ), θi ) +

∑
j ̸=i

vj(k
∗(θ̂i , θ−i ), θj)

− hi (θ−i )


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VCG Mechanism: Groves’ Transfers

Agent’s problem is now

max
θ̂i

∑
j∈N

vj(k
∗(θ̂i , θ−i ), θj)− hi (θ−i )


Every agent i chooses report θ̂i to maximize welfare!

Optimal to report true θ̂i ,

for any θ−i .

Crucial that hi (θ−i ) does not depend on i ’s report.
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VCG Mechanism: Example

Example (Moon Base)

N citizens decide whether to build a Moon base which costs c

citizen i has private valuation θi for the base and quasilinear utility

(so if base built then vi = θi , otherwise vi = 0)

What are Groves’ transfers? (Take hi (θ−i ) ≡ 0.)

The incentives are there... but at what cost?

11



VCG Mechanism: Clarke Term

A suggestion for hi (θ−i ) made by Clarke (“pivot mechanism”):

hi (θ−i ) =
∑
j ̸=i

vj(k
−i (θ−i ), θj),

where k−i (θ−i ) ∈ argmax
k

∑
j ̸=i

vj(k, θj).

NOTE: it is the default allocation rules k−i (θ−i ) that each textbook defines differently (or

replaces with other things). My version is quite robust, but you can use other default rules

if they make more sense in a given setting (so long as the rule for i is independent of θi )

Resulting VCG transfers:

tVCGi (θ) ≡ −

∑
j ̸=i

vj(k
∗(θi , θ−i ), θj)

+
∑
j ̸=i

vj(k
−i (θ−i ), θj)
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VCG Mechanism: Final Transfers

tVCGi (θ) = −

∑
j ̸=i

vj(k
∗(θi , θ−i ), θj)

+
∑
j ̸=i

vj(k
−i (θ−i ), θj)

What’s the big idea?

Agent i receives the externality his report imposes on others (mind the signs).

i ’s transfer is non-zero only if his presence affects the decision k.

Note that i cannot misreport θi and get lower transfer without also changing k.

What are VCG transfers in the Moon Base question?
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VCG Mechanism: Example

Example (Auction)

One indivisible item to be allocated among N bidders.

Bidder i ’s valuation is θi (private info).

What is the VCG mechanism?

VCG mechanism is the second-price auction (efficient and DSIC).

Also known as the Vickrey auction (the V in VCG).
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VCG aftermath

We have an easy recipe to implement the efficient outcome in dominant strategies.

Any problems?
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Feature example: bilateral trade

Example (Bilateral Trade)

One indivisible good.

Two agents: buyer and seller.

Private valuations θb, θs ∈ [0, 1] resp.

Find the VCG transfers (take no trade as efficient when θs = θb).
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Feature example: bilateral trade

If you did everything correctly, you’ll get

tVCGb (θ) = θs · I{θs < θb}
tVCGs (θ) = θb · I{θs ≥ θb}

The seller pays to keep the good and doesn’t get anything from selling it. Good deal?
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Individual rationality

In many settings can’t force players to participate in mechanism:

Definition (IR)

A mechanism Γ is:
interim individually rational if Eθ−i

[ui (θi , θ−i )] ≥ U i (θi ) for all θi ;

ex post individually rational if ui (θi , θ−i ) ≥ U i (θi ) for all θ.

U i (θi ) is the outside option of type θi

(in bilateral trade: Us(θs) = θs)

expectation means that distribution of θs now matters!

(whether a mechanism is DSIC does not depend on the distr-n; but whether it is IR does)

19



Detour – brief review

ex ante = i knows nothing;

ex interim = i knows θi ;

ex post = i knows θi and θ−i .

We’ll mostly work with interim IR;

ex post IR is also sometimes used in the literature.
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Budget balance

VCG for bilateral trade example is not IR for seller (outside option = keep the good).

If we want mechanism to be IR, easy solution is to decrease ti (θ) by a lot, for all θ.

But that’s expensive – want mechanism to be budget balanced:

Definition (BB)

Mechanism Γ is ex ante budget balanced if Eθ

[∑N
i=1 ti (θ)

]
≥ 0;

Mechanism Γ is ex post budget balanced if
∑N

i=1 ti (θ) ≥ 0 for all θ.

Mechanism is exactly BB if the above hold with equalities.

If Γ is ex post BB then it is ex ante BB (prove).
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IR vs BB

Fundamental tension between IR and BB.

We want to ask the following question (within our bilateral trade example, in particular):

Does there exist a mechanism that is: efficient, DSIC, IR, BB?

We know VCG was not IR, but that’s just one mechanism. Can we say whether any other
mechanisms satisfy all requirements?

Not in most general case*, but all examples (trade, auction, pub.project) fit a much narrower model

where we can.

*though see Prop 23.C.5 in MWG
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The Euclidean model

Assumption: Euclidean setting

Make the following assumptions on top of quasilinearity:

θi ∈ Θi = [θi , θ̄i ] ⊆ R, full support;
k ∈ K ⊆ RN , K compact, convex set;

ui (x , θi ) = θiki − ti .

I’ll call the above the Euclidean model (not standard name).

We’ll derive Payoff-equivalence as a necessary condition for Γ to be DSIC in Euclidean

model. It’s a cool property on its own and will help answer the question about BB/IR

mechanisms later.

Given Γ, denote Ui (θi , θ−i ) ≡ ui (x(θi , θ−i ), θi ).
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Monotonicity

Assume Γ is a direct mechanism (or consider its direct equivalent).

Play a bit with i ’s IC (truthtelling constraint): for any i , θi , θ̂i , θ−i ,

Ui (θi , θ−i ) ≥ ui

(
x(θ̂i , θ−i ), θi

)

≡ θiki (θ̂i , θ−i )− ti (θ̂i , θ−i )

= θ̂iki (θ̂i , θ−i )− ti (θ̂i , θ−i ) +
(
θi − θ̂i

)
ki (θ̂i , θ−i )

= Ui (θ̂i , θ−i ) +
(
θi − θ̂i

)
ki (θ̂i , θ−i )

In the end:

Ui (θi , θ−i ) ≥ Ui (θ̂i , θ−i ) +
(
θi − θ̂i

)
ki (θ̂i , θ−i ).

Similarly, type θ̂i should not want to report θi :

Ui (θ̂i , θ−i ) ≥ Ui (θi , θ−i ) +
(
θ̂i − θi

)
ki (θi , θ−i ).
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Monotonicity

Combining the two for θi > θ̂i , we get

ki (θi , θ−i ) ≥
Ui (θi , θ−i )− Ui (θ̂i , θ−i )

θi − θ̂i
≥ ki (θ̂i , θ−i ), (1)

meaning ki (θi , θ−i ) ≥ ki (θ̂i , θ−i ) – allocation rule must be monotone.

DSIC: “Those who value things more should get more things.”

Monotonicity is necessary for f to be DSIC in Euclidean settings.

From monotonicity we can build up to payoff equivalence, the second cool result in

mechanism design (after revelation principle, not monotonicity).
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Payoff Equivalence

ki (θi , θ−i ) is monotone in θi , hence continuous a.e.: limθ̂i→θi
ki (θ̂i , θ−i ) = ki (θi , θ−i ).

Together with the big inequality (1) this means that a.e. we have

∂Ui (θi , θ−i )

∂θi
= lim

θ̂i→θi

Ui (θi , θ−i )− Ui (θ̂i , θ−i )

θi − θ̂i
= ki (θi , θ−i ).

So if k(θ) is integrable in θi (e.g. if it’s bounded) then for all θi

Ui (θi , θ−i ) = Ui (θi , θ−i ) +

∫ θi

θi

ki (s, θ−i )ds

(Note that the lower limit does not need to be θi – it can be any other type.)

This is the envelope representation of payoffs a.k.a. Mirrlees condition. From it we can

immediately get revenue equivalence.
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Payoff Equivalence

Theorem (Payoff Equivalence for DSIC Euclidean mechanisms)

In the Euclidean setting, for any two DSIC DRMs with x = (k, t) and x ′ = (k ′, t ′) respectively:

if k(θ) = k ′(θ) for all θ then ti (θ) = t ′i (θ) + ci (θ−i ) for all θ for some ci (θ−i ).

Proof. Given the envelope representation, invoke the definition of Ui :

vi (k
∗(θi , θ−i ), θi )− ti (θi , θ−i ) = Ui (θi , θ−i ) +

∫ θi

θi

ki (s, θ−i )ds.

The above holds in any DSIC DRM. Take the two mechanisms in the statement, fix some θ, i ,

express ti (θ) and t ′i (θ) from the above, and you will get that

ti (θ) = t ′i (θ)− Ui (θi , θ−i ) + U ′
i (θi , θ−i ),

where Ui and U ′
i denote the eqm utilities in the two mechanisms. The last two terms only

depend on i and θ−i (but not θi ), hence denoting them as ci (θ−i ) concludes the proof. □
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Payoff Equivalence: intuition

Given allocation k (doesn’t have to be efficient), utility of one type (usually “lowest” type)

pins down utils of all types of player i given fixed θ−i .

Equivalently, have only one degree of freedom for i ’s transfers given θ−i .

Reminds you of anything?
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Equivalently, have only one degree of freedom for i ’s transfers given θ−i .

Reminds you of anything?
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Payoff Equivalence of Efficient Mechanisms

Recall Groves’ transfers: efficient k∗ can be impl-d in DS by

ti (θ) = −

∑
j ̸=i

vj(k
∗(θi , θ−i ), θj)

+ hi (θ−i )

= −

∑
j ̸=i

θjk
∗
j (θi , θ−i )

+ hi (θ−i )

for some hi (θ−i ).

Payoff equivalence implies that efficient k∗ in a Euclidean model can ONLY be

DS-implemented by some Groves’ mechanism.
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Payoff Equivalence: Beyond Euclidean

Both monotonicity and payoff equvalence hold beyond the Euclidean setting:

various forms of monotonicity are necessary and sufficient for DSIC in quasilinear setting;

payoff equivalence of DSIC mechanisms is generalizable beyond Euclidean (but you cannot

get to general quasilinear setting);

see Börgers for details:

ch.5: single-player problems,

ch.7: DSIC results building on ch.5.
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Payoff Equivalence (DSIC): Conclusion

So what does payoff equivalence tell us?

Efficient allocation k∗ can only be implemented using Groves’ transfers...

...but hi (θ−i ) still provides a lot of flexibility!

So it’s hard to know whether VCG is the best mechanism or there are others.

So let us weaken our implementation concept to obtain a stronger version of payoff

equivalence.
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Back to bilateral trade

Remember how this detour started?

Example (Bilateral Trade)

One indivisible good.

Two agents: buyer and seller.

Private valuations θb, θs ∈ [0, 1] resp.

Is there an efficient, DSIC, ex post IR, ex post BB mechanism?

Can we answer this question now?
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Payoff Equivalence in BIC

We now show payoff equivalence for BIC mechanisms in the Euclidean setting.

New assumption: types are independent across players: θi ⊥ θ−i for all i .

Theorem (Payoff Equivalence for BIC mechanisms)

For any two BIC DRMs with x = (k , t) and x ′ = (k ′, t ′) resp.:

if Eθ−i ki (θi , θ−i ) = Eθ−i k
′
i (θi , θ−i ) for all i , θi ,

then Eθ−i ti (θi , θ−i ) = Eθ−i t
′
i (θi , θ−i ) + hi for all i , θi for some hi .

As before, implies that for given k (any, not just the efficient) we only have one degree of
freedom for ti (θ),

now “just one” instead of “just one given θ−i”.
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Payoff Equivalence in BIC. Proof

Let

Ũi (θ̂i , θi ) ≡ Eθ−i

[
ui
(
x(θ̂i , θ−i ), θi

)
|θi

]
= Eθ−i

[
θiki (θ̂i , θ−i )− ti

(
θ̂i , θ−i

)
|θi

]
.

(do not confuse with Ui in Euclidean model for DS.)

Take full derivative w.r.t θi at θ̂i = θi :

d

dθi
Ũi (θi , θi ) =

∂

∂θ̂i
Ũi (θ̂i , θi )

∣∣∣∣
θ̂i=θi

+
∂

∂θi
Ũi (θ̂i , θi )

∣∣∣∣
θ̂i=θi

= 0 + Eθ−i [ki (θi , θ−i )|θi ]

The first term is zero because truthful report θ̂i = θi maximizes Ũi (θ̂i , θi ).
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Ũi (θ̂i , θi )

∣∣∣∣
θ̂i=θi

= 0 + Eθ−i [ki (θi , θ−i )|θi ]

The first term is zero because truthful report θ̂i = θi maximizes Ũi (θ̂i , θi ).
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Payoff Equivalence in BIC. Proof

Then by the Fundamental Theorem of Calculus (with Ūi (θi ) ≡ Ũi (θi , θi ))

Ūi (θi ) = Ūi (θi ) +

∫ θi

θi

dŪi

dθi
(s, s)ds

= Ūi (θi ) +

∫ θi

θi

Eθ−i [ki (s, θ−i )|θi ] ds,

meaning that k and Ūi (θi ) pin down utilities Ūi (θi ) for all θi . □

Remark: here we used a different argument to get dŪi (θi ,θi )
dθi

= Eθ−i [k(θi , θ−i )|θi ]
compared to DSIC proof. Either argument can be used in both proofs.
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Payoff Equivalence in BIC. Generalization

The proof is nice and illustrative in Euclidean setting.

Krishna and Maenner [2001] present a more general result for the following setting:

quasilinear setting;

independent types;

Θi ⊆ RKi is a convex set for every i

vi (k, θi ) is convex in θi for all i .
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Ex ante and ex post revenue in BIC

One cool thing about BIC mechanisms is that ex post BB is free if you have ex ante BB:

Theorem

In a quasilinear setting, for every direct mechanism Γ = (Θ, (k, t)) that is BIC and ex ante BB,

there exists a direct mechanism Γ′ = (Θ, (k ′, t ′)) which is:

BIC,

ex post BB,

equivalent to Γ in the sense of: k ′(θ) = k(θ) for all θ and Eθ−i t
′
i (θi , θ−i ) = Eθ−i ti (θi , θ−i )

for all i and θi .

For proof, see Prop 6.3 & Prop 3.6 in Börgers.
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Generalized VCG

As it turns out, VCG can be (interim) IR with a slight modification... And it will be (ex

ante) revenue-maximizing among all such mechanisms in that case.

Enter generalized VCG [Krishna and Perry, 2000].

Define least charitable type θ̃i as

θ̃i ∈ arg min
θi∈Θi

Eθ−i

 N∑
j=0

vj(k
∗(θi , θ−i ), θj)− U i (θi )


(expectation taken w.r.t the common prior ϕ ∈ ∆(Θ))
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Generalized VCG

GVCG mechanism is a DRM with the efficient allocation k∗(θ) and payments

tGVCGi (θ) ≡
∑
j ̸=i

vj(k
∗(θ̃i , θ−i ), θj) + vi (k

∗(θ̃i , θ−i ), θ̃i )−

−
∑
j ̸=i

vj(k
∗(θi , θ−i ), θj)− U i (θ̃i )

Has the usual Groves’ term (the third one); the other three guarantee IR.

The first term is similar to Clarke’s term, but with k∗(θ̃i , θ−i ) instead of k−i (θ−i )

2nd and 4th is the net utility that LCT θ̃i gets from participating in the mechanism – need

to also pay it to all other types
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Generalized VCG

Theorem (gVCG, part 1)

In a quasilinear model, gVCG is:

efficient (by construction),

DSIC,

interim IR.

Prove DSIC on your own (analogous to VCG).
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Generalized VCG. Proof: IIR

Interim expected utility for θi is

Eθ−i

 N∑
j=0

vj(k
∗(θ), θj)−

N∑
j=0

vj(k
∗(θ̃i , θ−i ), θj)

∣∣∣∣∣∣
θi=θ̃i

|θi

+ U i (θ̃i )

≥ U i (θi )

The inequality above is the IIR constraint, and it holds since

θ̃i ∈ arg min
θi∈Θi

Eθ−i

 N∑
j=0

vj(k
∗(θi , θ−i ), θj)− U i (θi )|θi


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Generalized VCG

Theorem (gVCG, part 2)

In a Euclidean model with independent players’ types, gVCG is:

efficient (by construction),

DSIC,

interim IR;

maximizes expected revenue among all mechanisms that are BIC, IIR, and implement the

efficient k∗.

If gCVG is not ex ante budget balanced, there does not exist a

{EFF + BIC + IIR + ex ante BB} mechanism (so no ex post BB either).
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Generalized VCG. Proof: revenue maximizing in Euclidean

Given revenue equivalence, just need to show we cannot decrease hi for any player w/o

violating IIR.

Decreasing hi only possible if IR slack for all types of i .

But IR binds for θ̃i : Ūi (θ̃i ) = U i (θ̃i ) (verify).
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Application: Bilateral Trade

Example (Bilateral Trade (revisited))

One indivisible good.

Two agents: buyer and seller.

Private valuations θb, θs ∼ i.i.d.U[0, 1] resp.

Is there an efficient, DSIC, ex post IR, ex post BB efficient, BIC, interim IR, ex ante BB

mechanism?

No, because gVCG is not BB. (This is the Myerson-Satterthwaite Theorem)
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AGV mechanism

One last mechanism before we go – in case you care about BB, but not IR.

Let

t̃i (θi ) ≡ Eθ−i

∑
j ̸=i

vj(k
∗(θi , θ−i ), θj)|θi


be the “expected externality” imposed by i on everyone else.

AGV transfers are given by

tAGVi (θ) ≡ 1

N − 1

∑
j ̸=i

t̃j(θj)− t̃i (θi ).

The second term is the averaged version of Groves’ transfer,

the first term is hi (θ−i ) which balances the budget.
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AGV mechanism

Theorem (AGV)

In a quasilinear model, AGV is:

efficient (by construction),

exactly ex post BB,

BIC.

Not necessarily IR. :(
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AGV mechanism. Proof: budget balance.

Observe that ∑
i

tAGVi (θ) =
∑
i

 1

N − 1

∑
j ̸=i

t̃j(θj)− t̃i (θi )

 .

For any j , RHS has:

N − 1 terms of the form 1
N−1

t̃j (θj ), and

1 term of the form −t̃j (θj ).

These cancel out and exhaust all terms in the sum. Therefore,
∑

i t
AGV
i (θ) = 0 for all θ =

ex post exact budget balance.

Note: if the mechanism needs to raise some fixed sum for any θ, it can be treated as t̃0.

If the mechanism needs to raise some sum that is dependent on θ (e.g. fund a public project iff it is

built), AGV cannot handle that.
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AGV mechanism. Proof: BIC.

If i reports θ̂i then receives utility

Eθ−i

vi (k∗(θ̂i , θ−i ), θi ) +
∑
j ̸=i

vj (k
∗(θ̂i , θ−i ), θj )|θi

−
1

N − 1

∑
j ̸=i

t̃j (θj )

Last term indep of θ̂i ;

bracket max-d by θ̂i = θi for every θ−i (since k∗ efficient),

so max-d by θ̂i = θi in expectation as well.

Reporting truth is a best response to −i reporting truthfully

⇒ truthful reporting is a BNE of the mechanism.
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Bottom line

We have two mechanisms that implement the efficient k∗ in quasilinear model:

AGV: BIC + BB,

gVCG: DSIC + IIR.

In the Euclidean model, gVCG is also [ex ante-]revenue-maximizing among BIC+IIR

mechanisms.

Revenue equivalence is powerful, but needs more structure than just quasilinear model.
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