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Exercises for Lecture 6:

Optimal mechanisms.

Problem 1: Malevolent Judicial Design

Revisit the Judicial Design exercise (L2 problem 4). Suppose that the defendant’s type is θ ∼ U [0, 1], which

stands for the probability of being acquitted if the defendant goes to the trial. Suppose that the DA wants to

maximize the expected length of the defendant’s sentence, i.e. to minimize the defendant’s expected payoff.

(So the DA gets a payoff of 1 for a life sentence and a payoff of r for a reduced sentence which would give

the defendant a payoff of −r.)

1. Among the incentive-compatible mechanisms you identified, what is the optimal mechanism for the

DA?

2. How does your answer change if going to trial imposes additional cost c ∈ (0, 1) on the DA (but not

on the defendant) relative to agreeing on a plea bargain?

Solution

The implementable social choice functions must look as follows, for some θ̄ ∈ [0, 1] (see the original problem):

f(θ) =

{
r if θ < θ̄

T if θ ≥ θ̄
,

where plea bargain r = 1− θ̄ is offered, and the defendant can choose between that and going to trial. The

DA gets r from a plea deal and 1 − θ if the defendant goes to trial, so the DA’s expected payoff from any

such f(θ) is:

Φ(θ̄) · (1− θ̄) +

∫ 1

θ̄

(1− θ − c)dΦ(θ) = θ̄(1− θ̄) +
1− 2θ̄ + θ̄2

2
− c(1− θ̄)

= (1− θ̄)

(
1 + θ̄

2
− c

) (1)

1. We could maximize (1) over θ̄ directly. However, for c = 0 there is a more direct solution. Any

defendant who takes the the plea bargain gets a lower sentence from the plea bargain than what they

would have gotten from trial. Thus, it is clearly optimal for the DA not to offer any plea bargains

(except perhaps to θ = 0, which will accept a plea bargain of 1), i.e., setting θ̄ = 0 is optimal.

2. When going to trial imposes cost c > 0 on the DA, maximizing (1) w.r.t. θ̄ yields the optimal threshold

θ̄ = c. So in the optimal mechanism, a plea deal r = 1−c is offered, sufficiently innocent types θ ∈ [0, c]

take it, and types θ ∈ (c, 1] prefer to go to trial.

Problem 2: Optimal Procurement Mechanism

Consider an inverted setting to the one discussed in the lecture: a seller now has an item of some privately

known quality θ ∈ [0, 1]. Here θ also equals the seller’s valuation of the item, and the buyer’s valuation is

given by v(θ) > θ. The buyer designs a direct revelation mechanism (k, t) to purchase this item, where k(θ)

is the probability of trade and t(θ) is the payment from the buyer to the seller.1 Players’ expected utilities

1Note that this formulation of the problem explicitly constrains the mechanism to be ex post budget balance requirement.
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given the seller’s true type θ and the seller’s report θ̂ are then given by

US(θ̂|θ) = −θk(θ̂) + t(θ̂),

UB(θ̂|θ) = v(θ)k(θ̂)− t(θ̂).

1. Show that for an allocation rule k(θ) to be IC for the seller, it must be weakly decreasing in θ.

2. ERP implies that the payoff of the seller of type θ can be written as US(θ|θ) = US(1|1) +
∫ 1

θ
k(s)ds.

Using this expression, show that the buyer’s expected utility in any IC DRM (k, t) is given by:

Eθ[UB(θ|θ)] =
∫ 1

0

k(θ)V S(θ)ϕ(θ)dθ − US(1|1),

where V S(θ) = v(θ)− θ − Φ(θ)
ϕ(θ) .

3. Explain each component of V S(θ).

4. Suppose from now on that θ ∼ U [0, 1]. Find the optimal allocation rule when v(θ) = 3θ
2 for θ ∈ [0, 1

3 ]

and v(θ) = 5θ
2 − 1

3 for θ ∈ [ 13 , 1].

5. Find the optimal allocation rule when v(θ) = 5θ
2 for θ ∈ [0, 1

3 ] and v(θ) = 3θ
2 + 1

3 for θ ∈ [ 13 , 1].

Solution

1. Take two arbitrary seller types θ and θ̂ > θ. The IC condition for θ to not be willing to falsely report

θ̂ is

US(θ|θ) ≥ US(θ̂|θ)

≥ −θk(θ̂) + t(θ̂)

≥ −θ̂k(θ̂) + t(θ̂) + (θ̂ − θ)k(θ̂)

≥ US(θ̂|θ̂) + (θ̂ − θ)k(θ̂)

⇐⇒ k(θ̂) ≤ −US(θ̂|θ̂)− US(θ|θ)
θ̂ − θ

.

Applying a similar chain of reasoning to the IC condition for θ̂ to not be willing to report θ yields

k(θ) ≥ −US(θ̂|θ̂)− US(θ|θ)
θ̂ − θ

,

hence k(θ) ≥ k(θ̂). Types θ and θ̂ > θ were arbitrary, hence any implementable k(θ) must be a weakly

decreasing function.

2. The expected utility of the buyer can be written as:

EUB(θ) ≡ EUB(θ|θ) = Eθ[v(θ)k(θ)− t(θ)]

Rearranging US to t(θ) = US(θ|θ) + θk(θ) and plugging it into the expected utility of the buyer:

EUB(θ) = Eθ[v(θ)k(θ)− US(θ|θ)− θk(θ)]
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Now, using the envelope theorem and integration by parts yields:

EUB(θ) = Eθ[(v(θ)− θ)k(θ)− US(1|1)−
∫ 1

θ

k(s)ds]

= Eθ

[
(v(θ)− θ)k(θ)−

∫ 1

θ

k(s)ds

]
− US(1|1)

=

∫ 1

0

[
(v(θ)− θ)k(θ)−

∫ 1

θ

k(s)ds

]
ϕ(θ)dθ − US(1|1)

=

∫ 1

0

(v(θ)− θ)k(θ)ϕ(θ)dθ −
∫ 1

0

∫ 1

θ

k(s)ϕ(θ)dsdθ − US(1|1)

=

∫ 1

0

(v(θ)− θ)k(θ)ϕ(θ)dθ −
∫ 1

0

k(θ)Φ(θ)dθ − US(1|1)

=

∫ 1

0

(
v(θ)− θ − Φ(θ)

ϕ(θ)

)
k(θ)ϕ(θ)dθ − US(1|1)

3. Explain each component of V S(θ).

V S(θ) = v(θ)− θ − Φ(θ)

ϕ(θ)

V S(θ) is the virtual surplus gained by the buyer in this model. v(θ) is the buyer’s valuation, θ is

the seller’s valuation which is equal to the quality of the item which is privately known by the seller.

The buyer does not know θ exactly, but he assumes that θ is a random variable with some cumulative

distribution function Φ(θ) and probability distribution function ϕ(θ).

Term v(θ)− θ represents the surplus generated by trade, this is what the buyer would maximize if he

could extract the information about θ from the seller at no cost. The term Φ(θ)
ϕ(θ) is the information

rent that must be left to the seller in order to incentivize truthtelling. The buyer thus maximizes

surplus net of information rents.

4. Calculate virtual surplus V S(θ) = v(θ)− θ − Φ(θ)
f(θ) :

V S(θ) =

{
3θ
2 − θ − θ

1 if θ ∈ [0, 1
3 ]

5θ
2 − 1

3 − θ − θ
1 if θ ∈ [ 13 , 1]

⇔ V S(θ) =

{
− θ

2 if θ ∈ [0, 1
3 ]

θ
2 − 1

3 if θ ∈ [ 13 , 1]

Pointwise optimization prescribes setting k(θ) = 1 if V S(θ) ≥ 0 and k(θ) = 0 otherwise. In this prob-

lem this would result in allocation k(θ) = I
{
θ ≥ 2

3

}
, which is not weakly decreasing as monotonicity

requires. Conversely, it is weakly increasing. The decreasing function that is “closest” to some increas-

ing function is a constant function. Therefore, let us look at constant allocations k(θ) = k̄ instead. By

linearity of buyer’s payoff in k̄ in that case, one of k̄ ∈ {0, 1} must be optimal (and k̄ ∈ (0, 1) cannot

be optimal).

Allocation rule corresponding to k̄ = 0 prescribes no trade w.p. 1, hence buyer’s payoff is zero.

Allocation rule k̄ = 1 prescribes trade w.p. 1 at a constant price, hence this price must be t̄ = max θ
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for all seller types to be willing to sell. Buyer’s expected payoff is then equal to

E [v(θ)− 1] =

∫ 1
3

0

3θ

2
dθ +

∫ 1

1
3

[
5θ

2
− 1

3

]
dθ − 1 =

35

36
− 1 < 0,

hence no trade (k(θ) = 0 for all θ) is optimal.

5. In this case we have

V S(θ) =

{
θ
2 if θ ∈ [0, 1

3 ]

− θ
2 + 1

3 if θ ∈ [ 13 , 1]

Pointwise maximization yields k(θ) = I
{
θ ≤ 2

3

}
. Monotonicity is not violated (the allocation is weakly

decreasing in θ), hence this allocation is implementable and, so, optimal.

NOTE: the answers to parts 4 and 5 above do not constitute a full derivation of the optimal mechanism,

since they do not handle the buyer’s choice of US(1|1) and the corresponding discussion of the seller’s IR

constraints. The problem does not ask for this (and only inquires about the optimal allocation rule), but if

you were asked instead to derive the full optimal mechanism, these extra steps would be expected.

Problem 3: Uber Optimal Algorithm

Suppose you are the head economist of Uber and you are designing the economic side of the matching

algorithm. Your goal is to pay the drivers as little as possible, while also ensuring their participation. In

particular, consider the following situation: some consumer has placed a fare (a ride order) in the app, and

there is a driver available in the vicinity. You (the app) are then effectively bargaining with the driver for

how little money they are willing to accept in order to complete this fare.

Suppose the app charges the consumer some amount w for the ride. This w is fixed and commonly known

by all players, including the driver and the designer. The driver values their time at θ ∼ U [0, 1], which is

their private information. You are designing a direct revelation mechanism {k(θ), p(θ)}θ∈[0,1], which works

as follows:

(i) the driver reports θ to the app;

(ii) the app offers the fare to the driver with probability k(θ) ∈ [0, 1];2

(iii) the driver can accept or reject the fare;

(iv) if the driver accepted and completed the fare, they receive payment p(θ);

(v) if the driver declined or was not offered the fare, they receive utility θ.

Therefore, the driver’s expected utility from receiving with probability k a fare that pays p is

u(k, t, θ) = k · p+ (1− k) · θ,

and their outside option (from rejecting the fare or the whole mechanism) is U(θ) = θ.

Your task is to devise an optimal mechanism (k, p) that maximizes the firm’s expected revenue Eθ[k(θ) · (w−
p(θ))] subject to the driver’s standard IC constraint and interim IR constraint u(k, t, θ) ≥ U(θ). To derive

this mechanism, follow the steps below.

1. Show that in any IC mechanism, k(θ) must be weakly decreasing.

2Think that if the fare is not offered to the driver, then the consumer sees an empty screen, as if there were no available
drivers in their area.
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2. Show that in any IC mechanism, the following holds for all θ (where U(θ) ≡ k(θ)p(θ) + (1− k(θ))θ):

U(θ) = U(1)−
∫ 1

θ

(1− k(s))ds. (2)

3. Show that in any IC mechanism, the firms’ expected profit (from this driver) can be expressed in the

following way as a function of the allocation rule k and U(1):

Eθ[k(θ) · (w − p(θ))] =

∫ 1

0

[2θ + k(θ) · (w − 2θ)] dθ − U(1). (3)

4. Find the allocation rule k that maximizes the expected profit (3). Does it satisfy the monotonicity

requirement from part 1? If not, what is the optimal monotone allocation rule?

5. Argue (formally if you can) why type θ = 1 is the one for whom the IR constraint will be the most

binding. I.e., show that if IR holds for θ = 1 then it also holds for all other θ ∈ [0, 1).

6. Suppose w = 1. Derive the payment rule p(θ) that supports the optimal [monotone] allocation rule.

7. Suppose w = 2. Derive the payment rule p(θ) that supports the optimal [monotone] allocation rule.

8. Are the mechanisms you obtained in the two previous questions ex post IR for the drivers? I.e., will

the driver always accept any fare that is offered to them?

Solution

1. The argument fully mirrors the argument from class and homeworks. Consider two types θ > θ′. The

IC condition for θ to not be willing to report θ′ is:

U(θ) ≡ k(θ)p(θ) + (1− k(θ))θ ≥ k(θ′)p(θ′) + (1− k(θ′))θ

= U(θ′) + (1− k(θ′))(θ − θ′).

Rearranging and dividing both sides by (θ − θ′) yields

U(θ)− U(θ′)

θ − θ′
≥ 1− k(θ′).

By doing the same manipulations for the IC condition for type θ′ to not be willing to report type θ,

we obtain

1− k(θ) ≥ U(θ)− U(θ′)

θ − θ′
≥ 1− k(θ′), (4)

hence k(θ) ≤ k(θ′).

2. Taking the limit as θ′ → θ, (4) becomes dU(θ)
dθ = 1− k(θ) (for almost all θ). Invoking the fundamental

theorem of calculus, we can say that for any θ then,

U(1)− U(θ) =

∫ 1

θ

dU(s)

ds
ds =

∫ 1

θ

(1− k(s))ds. (5)

Rearranging this expression yields the result.
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3. Using (5) and the definition of U(θ), we can express the average payment to type θ as

k(θ)p(θ) = −(1− k(θ))θ −
∫ 1

θ

(1− k(s))ds+ U(1), (6)

hence the firm’s expected profit from type θ is

k(θ) · (w − p(θ)) = wk(θ) + (1− k(θ))θ +

∫ 1

θ

(1− k(s))ds− U(1).

Taking the expectation over types θ, we get the expression for the expected profit:

Eθ[k(θ) · (w − p(θ))] =

∫ 1

0

[
wk(θ) + (1− k(θ))θ +

∫ 1

θ

(1− k(s))ds

]
dΦ(θ)− U(1).

Since θ ∼ U [0, 1], we have that Φ(θ) = θ for θ ∈ [0, 1]. Using integration by parts to eliminate the

inner integral and then simplifying the resulting expression, we get

Eθ[k(θ) · (w − p(θ))] =

∫ 1

0

[wk(θ) + (1− k(θ))θ + θ(1− k(θ))] dθ − U(1)

=

∫ 1

0

[2θ + k(θ) · (w − 2θ)] dθ − U(1).

4. Maximizing the expression under the integral for any θ, we get that k(θ) = I
{
θ ≤ w

2

}
. This allocation

rule is indeed weakly decreasing.

5. Recall U(θ) = θ. From (5) (equivalently, (3)) and the fact that k(θ) ≥ 0, we can infer that for all θ,

U(1)− U(θ) ≤ 1− θ

⇔U(1)− 1 ≤ U(θ)− θ.

Hence if U(1) ≥ 1 ⇐⇒ U(1)− 1 ≥ 0, then U(θ)− θ ≥ 0 ⇐⇒ U(θ) ≥ θ.

6. Transfers are pinned down by k and U(1) by the envelope representation of payoffs (3). We have k

from part 4. From part 5 we know that U(1) = 1 is both necessary and sufficient for all IR constraints

to hold and for at least one of them to bind. Plugging the both of these into (6), we get that for θ ≤ w
2 ,

k(θ)p(θ) = −(1− k(θ))θ −
∫ 1

θ

(1− k(s))ds+ U(1)

⇒ if k(θ) = 1, p(θ) = −
∫ 1

θ

(1− k(s))ds+ 1

= −
∫ w/2

θ

0ds−
∫ 1

w/2

1ds+ 1

= 1−
(
1− w

2

)
=

w

2
.

Hence if w = 1, any driver that receives the fare (θ < w
2 ) is paid p(θ) = 1/2. Drivers who report

θ > w/2 are not offered a fare and are paid nothing.3

7. Using the results from the previous parts, if w = 2 then the optimal mechanism is k(θ) = 1 for all

θ and p(θ) = 1, i.e., the driver receives this offer and is compensated handsomely regardless of their

report.

3The exact value of p(θ) is indeterminate in this case, since p is defined as payment conditional on completing the fare.
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8. Yes. If θ < w/2, the driver is offered a fare and a reward p(θ) = w/2, so accepting the fare for p(θ) is

better than rejecting and receiving U(θ) = θ.

Problem 4: Divine intervention

The year is 854 AD. The place is Denmark. The reigning king Horik is challenged by his nephew Guttorm

for the claim to the kingdom. Both know that a grand battle between them in inevitable, and both are

praying to Odin and the rest of Æsir to tilt the outcome of this battle in their favor. You are to assume the

role of Odin and to decide the outcome of the battle.

In particular, you are a mechanism designer dealing with two players i = H,G. Every player i has a private

type θi ∼ U [0, 1] (θH and θG are indepedent). An outcome is given by x = (k, t), where k = (kH , kG) is an

allocation such that ki ∈ [−1, 1] and kH + kG ≤ 0, and t is a vector of transfers. Players’ payoffs are given

by ui(x, θ) = kiθi − ti. The outside options are normalized to zero.

In our story, allocations represent who wins the battle: e.g., (kH , kG) = (1,−1) means Horik wins while

Guttorm loses and is killed in battle. Restriction kH + kG ≤ 0 means that they cannot both win, but can

both lose. Transfer ti need not mean money, but rather (the negative of) favor that the gods will show

to i outside of battle, in life or afterlife. Horik’s and Guttorm’s types represent their paltriness. Higher θi
means that i would very much prefer to become a king and is very afraid of death. Low θi means that i

values honorable death in combat almost as highly as reign over the realm. Finally, the “outside option”

represents fleeing from the battle, retaining life but losing the kingdom. The level of “favor” ti in this case

is normalized to zero (i.e., favor is measured relative to this scenario).

For the first part of this problem, suppose that Odin & the co-gods love a good battle (so do not want players

to flee), but are otherwise benevolent and do not care about favor. They thus decide to use the generalized

VCG mechanism to determine the outcome.

1. Find the efficient allocation rule k∗(θ) = argmaxk{uH(k, θ) + uG(k, θ)}.

2. Find the least charitable types θ̃i.

3. Calculate the gVCG transfer rule tgV CG(θ) that supports the efficient allocation rule.

Suppose now instead that the gods are not benevolent, but try to minimize the amount of favor they owe

to mortals – i.e., to maximize E[tH + tG]. That said, they still like to see a good battle, so ensuring that

neither player decides to flee takes priority.

4. Find the optimal BIC mechanism that maximizes the expected “revenue” Eθ[tH(θ)+ tG(θ)] subject to

the players’ IR constraints.

Solution

1. The efficient allocation is obviously (you may have a different tie-breaking rule)

k∗(θ) =


(1,−1) if θH > θG;

(0, 0) if θH = θG;

(−1, 1) if θH < θG.
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2. The least charitable type is

θ̃i ≡ argmin
θi

Eθ−i
{θHk∗H(θ) + θGk

∗
G(θ)− 0}

= argmin
θi

Eθj {(θi − θj) k
∗
i (θ)}

= 0.5

3. The gVCG transfer rule for i is

tgV CG
i (θi, θ−i) = θjk

∗
j (θ̃i, θj) + θ̃ik

∗
i (θ̃i, θj)− θjk

∗
j (θi, θj)− U i(θ̃i)

= |0.5− θj | − θj · sgn(θj − θi)

=


|0.5− θj | − θj if θi < θj ,

|0.5− θj | if θj = θi,

|0.5− θj |+ θj if θi > θj .

I.e., if θj < 0.5 then i pays 0.5 if he wins and 0.5 − 2θj ≷ 0 if he loses; while if θj > 0.5 then i pays

2θj − 0.5 > 0 if he wins and receives 0.5 if he loses.

4. Invoke BIC ERP (we can use it since the problem fits the Euclidean setting):

Ūi(θi) = Ūi(0) +

∫ θi

0

Eθ−i
[ki(s, θ−i)]ds (7)

and substitute the definition of the expected utility Ūi(θi) to get

Eθ−i [ti(θi, θ−i)] = θiEθ−i [ki(θi, θ−i)]− Ūi(0)−
∫ θi

0

Eθ−i [ki(s, θ−i)]ds (8)

=

∫ 1

0

θiki(θi, θ−i)ϕ(θ−i)dθ−i −
∫ 1

0

(∫ θi

0

ki(s, θ−i)ds

)
ϕ(θ−i)dθ−i − Ūi(0). (9)

The second line rewrites the expectations as integrals. Taking the expectation of both sides over θi as

well and recalling that pdfs are ϕ(θi) = 1 for U [0, 1] distribution, we get

Eθ[ti(θi, θ−i)] =

∫ 1

0

∫ 1

0

θiki(θi, θ−i)dθ−idθi −
∫ 1

0

∫ 1

0

∫ θi

0

ki(s, θ−i)dsdθidθ−i − Ūi(0) (10)

=

∫ 1

0

∫ 1

0

θiki(θi, θ−i)dθ−idθi −
∫ 1

0

∫ 1

0

(1− θi)ki(θi, θ−i)dθidθ−i − Ūi(0) (11)

=

∫ 1

0

∫ 1

0

(θiki(θ)− (1− θi)ki(θ)) dθidθ−i − Ūi(0) (12)

=

∫ 1

0

∫ 1

0

((2θi − 1)ki(θ)) dθidθ−i − Ūi(0). (13)

In the above, from (10) to (11) we used integration by parts as in class, then combined the two integrals

to get (12) and simplified the resulting expression in (13). The total expected “revenue” (negative of

the favor owed) from both players is then given by

Eθ [tH(θ) + tG(θ)] =

∫ 1

0

∫ 1

0

[(2θH − 1)kH(θ) + (2θG − 1)kG(θ)] dθHdθG − ŪG(0)− ŪH(0). (14)
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The goal is to maximize the expression above over k. To maximize the integral pointwise (θ-by-

θ), we would want to set ki(θ) = −1 if θi < 0.5 and ki(θ) = 1 if θi > 0.5. The former is not a

problem – in particular, if both θH , θG < 0.5, then both Horik and Guttorm would die in battle.4

The latter, however, is not possible whenever both θH , θG > 0.5, since we have the constraint that

kH + kG ≤ 0 – both cannot win at the same time. The constrained-optimal allocation that maximizes

(2θH − 1)kH(θ) + (2θG − 1)kG(θ) s.t. kH + kG ≤ 0 would be giving the victory to the person with the

higher θi when θH , θG > 0.5. In the end, the allocation rule in the optimal mechanism is given by

k(θ) =


(1,−1) if θH > max{θG, 0.5};
(−1, 1) if θG > max{θH , 0.5};
(−1,−1) if 0.5 ≥ max{θH , θG}.

Monotonicity holds: ki(θi, θ−i) is weakly increasing in θi for all θ−i, hence Eθ−i
[ki(θi, θ−i)] is also

weakly increasing in θi, hence this allocation rule k is indeed implementable in BNE. In fact, the

former statement implies that k is even implementable in dominant strategies.

To calculate transfers, go back to ERP. You can actually use either BIC, or DSIC ERP to obtain

transfers that will support k in BNE or in dominant strategies, respectively. Let us take BIC ERP:

Eθ−i
[ti(θi, θ−i)] = θiEθ−i

[ki(θi, θ−i)]− Ūi(0)−
∫ θi

0

Eθ−i
[ki(s, θ−i)]ds

=

{
θi(−1)−

∫ θi
0
(−1)ds− Ūi(0) if θi ≤ 0.5;

θi(2θi − 1)−
∫ 0.5

0
(−1)ds−

∫ θi
0.5

(2s− 1)ds− Ūi(0) if θi > 0.5;

=

{
−Ūi(0) if θi ≤ 0.5;

θ2i +
1
4 − Ūi(0) if θi > 0.5.

This gives us the expected (over θ−i) transfer of i given θi, but how do can we get ti(θi, θ−i)? A simple

answer is: unless we care about ex post IR or BB, there is no real reason in BIC mechanisms to make

ti contingent on θ−i. I.e., given θi, for any θ−i we can just set i’s transfer to be equal to5

ti(θi) = Eθ−i [ti(θi, θ−i)] =

{
−Ūi(0) if θi ≤ 0.5;

θ2i +
1
4 − Ūi(0) if θi > 0.5.

We are almost done. The only thing left is to pin down the utilities Ūi(0), which would also pin down

the transfers. According to (14), we want to set them as low as possible, but we also want to satisfy

IR. Write out players’ expected utility:

Ūi(θi) = θiEθ−i [ki(θi, θ−i)]− Eθ−i [ti(θi, θ−i)]

=

{
−θi + Ūi(0) if θi ≤ 0.5;

θ2i − θi − 1
4 + Ūi(0) if θi > 0.5.

It is minimized at θi = 0.5, meaning that if the IR constraint holds for type θi = 0.5 then it will

4According to legends, this was the actual outcome: “A huge battle was fought which lasted for three days. King Horik I
“and the other kings” were killed, as were Guttorm and a great many chiefs”. (https://en.wikipedia.org/wiki/Horik_
I\#Downfall)

5An alternative path is, as was mentioned previously, to use DSIC ERP to obtain transfers t that support our k in DS. If
you did that, you would get

ti(θi, θ−i) =

{
−Ui(0, θ−i) if θi ≤ 0.5;

2max{θ−i, 0.5} − Ui(0, θ−i) if θi > 0.5.
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also hold for all other types.Setting the IR constraint to bind for that type (Ūi(0.5) = 0), we obtain

Ūi(0) = 0.5, so in the end, the transfers that support the favor-minimizing allocation k in BNE are

given by

ti(θi) =

{
−0.5 if θi ≤ 0.5;

θ2i − 1
4 if θi > 0.5.
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