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Previously on...

1 The spread is not only driven by adverse selection: order costs and inventory risk have an

effect as well
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Homework from last time

We said today that inventory risk is priced when the dealer is risk-averse. Risk-aversion is one

explanation, but other factors can also contribute to inventory risk. The two following cases

explore this issue:

A big trader was punted off the Nordic power market after failing to meet margin calls
(two articles on absalon).

How does inventory risk manifest in this story?

Explain why such inventory risk can be priced even by risk-neutral agents.

Negative oil futures prices were registered last year (blog post on absalon or here).

Why did it happen? How do negative prices make sense?

How does inventory risk manifest in this story?

Explain why such inventory risk can be priced even by risk-neutral agents.
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Inventory concerns more broadly

We have discussed how dealers’ risk-aversion can drive the spread, depth, and make prices

deviate from the efficient level

Two comments on that, from the cases you read:

Point 1: risk-aversion in markets may stem from market risks, rather than inherent
risk-aversion in preferences.

Standard story: u(w) is concave in future wealth (e.g., MeanVar/CARA/CRRA prefs), and

w ∼ z · v + ... (position × asset value), hence u(v) is concave in v , more so for higher z.

Alternative: u(w) is linear (risk-neutrality), but low v creates higher risk of margin calls, which are

costly: w ∼ z · (v − c · I{v < v , z > 0}) + ... ⇒ u(v) is again concave in v .

Either story leads to dealer’s inventory affecting their willingness to buy/sell
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Inventory concerns more broadly

Point 2: what if traders in the market are risk-averse, and not just the dealer?

If traders provide liquidity (e.g., we are in LOB market and not a dealer market) – same inventory

risks

If general market populace is risk-averse: in a similar way, traders’ valuation for the asset would

depend on how far their current position is from their ideal position.

So if there is some aggregate imbalance – i.e., current aggregate holdings (many traders long on oil

futures) are different from aggregated ideal positions (everyone wants to dump their futures) – then

market price might deviate from the fundamental value

(Although the question to ask is: why did such discrepancy in positions arise in the first place, and is

it by itself informative about the fundamentals)
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Today

Trade size

How does trade size affect prices?

I.e., what determines market depth?

(Spoiler: mostly the same factors as with liquidity)

Will look at Kyle (1985) model – an alternative to GM that allows flexible trade size
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Prices and trade size

How does trade size affect prices?

Spread larger for large trades, price moves further from efficient level

I.e., market has limited depth

Why?

1 Adverse selection: larger trades indicate more/stronger news

2 Inventory risk: large positions are risky and take dealers longer to unwind, hence require larger

premiums

3 Imperfectly competitive dealers: market power allows dealers to set wider spread and steeper or

flatter pricing schedules

4 Order processing costs: may increase or decrease (per stock) in total order size
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Kyle model

We will look at Kyle (1985) model which links market depth to adverse selection

It can be extended to accomodate imperfect competition among dealers (see 4.2.4) and
inventory risk (4.3)

the inventory risk version is broadly similar to the Stoll model that we skipped

trading costs are very difficult to incorporate in this model
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Setup: Broad strokes

A call auction; orders come from a “large” speculator and a population of noise traders;

market cleared by a dealer.

Speculator/informed trader: has private information

Trades using a ‘large’ speculative market order

Strategically moderates order size to reduce price impact

‘Hides’ behind noise traders who submit a random size order

Representative market maker (MM)/dealer

Risk neutral and competitive (zero profits)

Clears orders in batches (as opposed to one-by-one in Glosten & Milgrom)

Cannot distinguish speculative orders from noise orders in a batch
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Setup

Asset: Trade in one risky asset with value v ∼ N (µ, σ2
v )

Speculator: Observes true value v (perfect information)

Places market order x

If the order clears at price p: gain is x(v − p)

Does not know p when choosing x : maximizes expected gain (risk neutral) given E[p|x]

Noise trader: Has random demand u ∼ N (0, σ2
u)

MM: Submits a supply schedule of (q, p) combinations:

“If the order imbalance is q = x + u, I will absorb it at price p”

Observes aggregate flow q = x + u, but not x and u

Competitive (zero profit): p = E[v |q]

Assumption: u and v are jointly normal and independent
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Setup: Timing

To be explicit, the timing is as follows:

1 at the beginning of the period:

speculator chooses order size x

noise traders submit their order u

dealer submits price schedule (q, p)

2 then market price p(q) is determined given total order q = x + u

3 at the end of the period payoffs are realized
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Linear equilibrium: outline

The equilibrium is described by the speculator’s strategy x(v) and the dealer’s pricing

schedule p(q).

Look for equilibrium where speculator’s strategy is linear: x = β(v − µ)

Note: β is endogenously determined by the equilibrium, we’ll derive it

β > 0 measures speculator aggression

MM’s pricing is driven by the zero-profit condition: p = E[v |q]
In eqm, MM knows the speculator’s strategy (x = β(v − µ))

So MM observes q = x + u = β(v − µ) + u, and wants to estimate v
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Aside: Hitchhiker’s guide to normal updating

Updating normal beliefs with normal signals might seem daunting at first, but here’s how it

works.

Suppose there is some uncertain variable x and our prior belief is that x ∼ N (µx , σ
2
x)

This prior belief is said to have precision τx ≡ 1
σ2
x
.

Suppose we get signal y about x with precision τϵ.

I.e., we observe y = x + ϵ, where ϵ ∼ N
(
0, 1

τϵ

)
(so τϵ ≡ 1

σ2
ϵ
).

Then our posterior belief about x has precision τx|ϵ = τx + τϵ, and the posterior mean

weighs the prior mean µx and the signal y according to their precisions:

x |y ∼ N
(

τx
τx + τϵ

µx +
τϵ

τx + τϵ
y ,

1

τx|ϵ

)
(you can verify this by directly calculating the conditional pdf)
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Deriving the distribution of v |q

In our case:

v ∼ N (µ, σ2
v ),

q = β(v − µ) + u, where u ∼ N (0, σ2
u), u ⊥ v .

So the prior precision (of the belief about v) is τv ≡ 1
σ2
v
,

and the signal is q̃ ≡ q
β + µ = v + u

β , which has precision τq̃ = β2

σ2
u

Then

v |q ∼ N
(

τv
τv + τq̃

µ+
τq̃

τv + τq̃
q̃,

1

τv + τq̃

)
∼ N

(
µ+

βσ2
v

β2σ2
v + σ2

u

q,

(
1

σ2
v

+
β2

σ2
u

)−1
)
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Dealer’s strategy

Going back to the zero profit condition:

p = E[v |q]

⇐⇒ p = µ+
βσ2

v

β2σ2
v + σ2

u

q

⇐⇒ p = µ+ λq,

where λ ≡ βσ2
v

β2σ2
v + σ2

u

(
=

C(v , q)
V(q)

)
Here λ is the price impact coefficient.

Conversely, 1/λ is a measure of market depth
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Speculator’s strategy

Back to the speculator’s problem. The speculator takes for granted the MM’s pricing rule

p = µ+ λq

Speculator’s profit is Π(x) = x(v − p) = x(v − µ− λx − λu)

Expected profit is E[Π(x)] = x(v − µ− λx), since E[u] = 0

Speculator chooses x to maximize E[Π(x)]. Using the first-order condition:

v − µ− 2λx = 0

⇒ x = β(v − µ),

where β = 1/(2λ)

Confirmed that it is optimal for the speculator to use a linear strategy!

Note analogy to monopoly problem:

trade-off b/w trading more and trading at better price
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Closing the equilibrium

Finally, ‘match’ the coefficients:

1

2β
= λ =

βσ2
v

β2σ2
v + σ2

u

i.e. β2σ2
v + σ2

u = 2β2σ2
v which yields

β =
σu

σv
and λ =

σv

2σu
.

Thus: the strategies are optimal given the prices, and the prices optimal given the

strategies → equilibrium
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Equilibrium properties

β =
σu

σv
and λ =

σv

2σu
.

Speculator is more aggressive (β higher) when:

1 The informational advantage σv is smaller (why?)

2 There’s more noise σu to hide behind (why?)

Market depth:
1

λ
= 2β = 2

σu

σv

The market is deeper when there is less insider trading and more noise trading
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Equilibrium properties

Insider’s a priori (before observing v) expected gain:

E[x(v − µ− λx)] = E
[
β(v − µ)

(
v − µ− v − µ

2

)]
= β

σ2
v

2
=

σvσu

2

Comment: speculator expects a positive profit (could abstain). Competitive risk-neutral

MM earns zero profits. Noise traders lose. Same as in GM.

Market maker’s posterior variance of v is

V(v |q) = 1

1/σ2
v + β2/σ2

u

=
σ2
v

2

Exactly half the prior variance: Insider reveals half his information
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Kyle’s model: summary

Dealer/market maker model: Competitive, risk-neutral (zero profit) dealer chooses a

supply schedule

Informed trader: Observes signal about asset value and places market order

Market clearing: Auction, dealer observes only total demand (informed + noise), total

demand clears

Insights: informed trading is a factor generating limited market depth, insider always

reveals half his information

Advantage: Richer trading opportunities, trader not price-taker

Shortcomings: Still no resale
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Kyle with inventory risk I

Now let’s look at how market maker’s inventory risk can lead to limited depth.

Assume no informed trading: x = 0.

Asset value v ∼ N (µ, σ2
v )

Market maker has mean-variance preferences over their next-period wealth:

U(wt+1) = E[wt+1]−
ρ

2
V(wt+1),

where w is composed of cash and asset holdings: wt+1 = (zt − qt)v + qtpt

MM’s initial asset position is zt (initial cash is irrelevant, ignore it).
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Kyle with inventory risk II

To get the pricing schedule, follow the competitive logic:

The market-maker takes some market price p as given, chooses how much q(p) to sell at this price:

max
q

(zt − q)E[v ] + qp︸ ︷︷ ︸
E[wt+1]

−
ρ

2
(zt − q)2V(v)︸ ︷︷ ︸

V(wt+1)


FOC: p − µ+ ρ(zt − q)σ2

v = 0 ⇐⇒ q(p) = zt +
p−µ
ρσ2

v

For market to clear, need q(p) = u = q (dealer’s supply = total traders’ market order), so

inverting the pricing schedule we get:

p(q) = µ+ ρσ2
v (q − zt).
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Kyle with inventory risk III

p(q) = µ+ ρσ2
v (q − zt)

Takeaways:

1 Depth (dictated by the dealer’s willingness to trade at a given price) is limited

2 This is despite traders still being completely price-insensitive in this model!

3 Price impact depends on asset riskiness σ2
v and MM’s risk aversion ρ.

4 Midquote depends on zt

So really, all the same stuff as in GM with inventory risk.

The book also looks at versions with many MMs with heterogeneous ρs, and many imperfectly

competitive MMs.
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Extensions

Other extensions are possible:

1 Dynamics

In a fully dynamic model, the insider reveals less than half of the information in each period. Why?

In order to better benefit from informational advantage

In the limit where trade is continuous over [0,T ], then V(v |q0, ..., qt) ≃ (T − t)
σ2
v
T
: variance

decreases linearly in time. Model of how to split a large trade over time

2 More insiders

More insiders are more competitive; more aggressive

The market is more liquid and more information revealed

In dynamic model with several insiders: rush to trade on common information from the beginning
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3 Imperfect market maker competition (Cournot style)

Finite number of market makers, k = 1, ...,K

Market maker k supplies yk = ϕ(p − µ)

Market clears at price p with
∑

yk = q

Strategic market maker takes into account effect of orders on profits

Now: p = µ+ λq where λ = α(K − 1)/(K − 2) > α.

4 Trading costs

Trivial in GM. Very difficult here, both technically and conceptually.

Don’t know how many trades there are, don’t know the total volume (not q – some noise traders’

orders could’ve cancelled each other out)

Even taking costs as a linear function of order imbalance |q| makes things difficult
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Homework

1 We will talk about empirical estimation of factors of illiquidity next time (ch.5) and begin

talking about LOB markets (without dealers; ch.6)

2 Solve ex 3 in ch.4 (p.159): Kyle’s model with competition among speculators.
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