
 

 

 

 

 

 

 

МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ 

 

MASTER THESIS 

 

                                       

Тема:        Влияние иерархии общения на эффективность            

   двусторонней коммуникации      

Title:   Communication in organizations:        

     sequential versus simultaneous cheap talk     

 

 

Студент/ Student: 

 

    Starkov Egor Alexeevich 
  (Ф.И.О. студента, выполнившего работу) 

 

 
Научные руководители/ Аdvisors: 

 

NES Associate professor of Economics  

        Sergei Izmalkov, PhD; 

NES Assistant professor of Economics 

Efthymios Athanasiou, PhD 
(ученая степень, звание, место работы, Ф.И.О.) 

 

 
Оценка/ Grade: 

     

Подпись/ Signature: 

     

 

Москва 2013 



Communication in Organizations:

Sequential versus Simultaneous Cheap Talk∗

Egor Starkov

Abstract

This paper looks into the question of optimal design of communication
network within a company. The principal trade-off in managerial decision-
making is often identified as adaptation to local environment versus coordi-
nation with other divisions within a firm. This trade-off creates a conflict of
interests between managers of different departments and prevents them from
communicating truthfully with each other. We explore different communica-
tion structures in order to optimize the communication process and find out
that if the divisions differ sufficiently in size and the smaller division depends
heavily on coordination then sequential communication with larger firm as
leader is more preferable by the firm, while with divisions of similar sizes
simultaneous communication yields better performance.

Öåëüþ äàííîé ðàáîòû ÿâëÿåòñÿ ñðàâíåíèå ðàçëè÷íûõ ìåòîäîâ èåðàð-

õè÷åñêîãî îáùåíèÿ ìåíåäæåðîâ âíóòðè ôèðìû. Â ðàáîòå ðàññìàòðèâàåòñÿ

ìîäåëü êîììóíèêàöèè, â êîòîðîé ìåíåäæåðû ñòàëêèâàþòñÿ ñ íåîáõîäèìî-

ñòüþ êîìïðîìèññà ìåæäó àäàïòàöèåé ê ëîêàëüíûì óñëîâèÿì ñâîåãî îòäå-

ëà è êîîðäèíàöèåé äåéñòâèé ñ äðóãèìè îòäåëàìè. Â ðåçóëüòàòå âîçíèêàåò

êîíôëèêò èíòåðåñîâ, âåäóùèé ê çàøóìëåííîñòè îáùåíèÿ. Â äàííîé ðàáî-

òå ïîêàçûâàåòñÿ, ÷òî ñõåìà ïîñëåäîâàòåëüíîãî îáùåíèÿ â òàêèõ óñëîâèÿõ

îêàçûâàåòñÿ áîëåå ïðåäïî÷òèòåëüíîé äëÿ ôèðìû â ñëó÷àå ñèëüíîé ðàç-

íèöû â ðàçìåðàõ îòäåëîâ, â òî âðåìÿ êàê äëÿ îòäåëîâ ñõîæèõ ðàçìåðîâ

ëó÷øèå ðåçóëüòàòû ïîêàçûâàåò ñõåìà îäíîâðåìåííîé êîììóíèêàöèè.

∗The author would like to thank Sergei Izmalkov and Efthymious Athanasiou for the atten-
tive advisorship and plenty of rich feedback throughout the process of writing this thesis, as well
as Sergei Stepanov for a quantity of valuable comments on the final version of the paper. Ac-
knowledgement also goes to Elena Paltseva and Eyal Winter who, without knowing this, were very
helpful during the search for the topic.
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1 Introduction

Cheap talk models in their majority explore settings with one-sided informational

asymmetry – in most papers, from seminal work by Crawford and Sobel (1982) to

recent contributions, one agent possesses some private knowledge that he wants to

some extent share with other agent, whose interests are somewhat, but not abso-

lutely, correlated with his own. No doubt that this topic is indeed of interest and

such models have a wide variety of real-life applications, e.g. in the context of expert

advice. Moreover, some problems with two-sided asymmetry may be reduced to or

separated into few problems with one-sided asymmetry: for example, if today I ask

your advice on the wallpapers that would best fit my living room, and tomorrow

you ask for my advice concerning monetary policy of Russian Central Bank – these

would be two different “uninformed principal & informed expert” problems, and if

we neglect dynamic issues like reputational concerns then they can easily be solved

separately.

Nonetheless, such decomposition of problem is not always possible. Leading

example that motivates such setting (of two-sided communication) and, thus, our

paper, comes from managerial economics and concerns the interaction of managers

who are in charge of different divisions of the firm. The issue is that every manager

running some division of a firm faces two goals that need to be fulfilled. Primary goal

is adaptation: “The essence of management is coping with change” (Chakravarthy,

1982, p.35). Any firm exists in a vastly changing conditions, and in order to sur-

vive it needs to keep up to the changes, which may include but are not limited to

fluctuations in demand, competitors’ behaviour, shocks to productivity, innovations

etc. Same is true for division-level managers – similarly, they have to optimize busi-

ness processes within their divisions and adapt to everchanging local environment.

What is important, the information about such local conditions (or any other dis-

persed division-specific “local information”) is perceived by managerial literature to

be dispersed within the firm (Grant, 1996; Cramton, 2001), i.e. it is possessed by
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managers of divisions to which it is relevant, but not by other managers and/or

principal (headquarters).

Another goal that needs to be fulfilled by a division manager is coordinating

activities with other divisions (Malone, 1987; Heath and Staudenmayer, 2000). A

nice illustration for this fact would be interaction between marketing and production

departments. Consider a car manufacturing company that is about to introduce a

new model in its model row. Marketing department has an aim of maximizing firm

sales and knows that consumers love red cars the most, so offering red color would

boost sales significantly. However, Henry from production insists that every car that

walks down the assembly line should be painted in a shade of black. The reason

is that black paint is cheaper, so that would result in lower costs, which is one of

his primary goals. Optimally, representatives of both departments should meet and

discuss, which option would yield maximal sales at minimal cost. This is, of course,

a somewhat jocular example, but substitute the color with a choice between steel,

aluminum and carbon as a main material for car body or with size and power of

engine installed on a car – and the example becomes more lively, doesn’t it?

In fact, trade-off between adaptation to local conditions and coordination with

other divisions is recognized as the principal trade-off in managerial decision-making

(Alonso et al., 2008b).

That is exactly where the problem arises: in order to coordinate with someone,

you need to know what his decision is likely to be. However, when making his

decision, the manager will try to adapt to his local conditions, information about

which is unavailable to you, which makes predicting his decision a tough problem. In

fact, not only you want to know the other agent’s information to predict his decision,

but also you would like to tell him something about your decision, so that he would

coordinate his decision with yours and thus mitigate the coordination problem (it is

in his interest as well). The other manager faces a completely symmetric problem,

so in the end there is a mutual desire to communicate. The problem is that because
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of the need for adaptation to differing local conditions, managers’ interests diverge:

each of them would like both decisions to answer the needs of his division, which

undermines the incentives for truthful communication, since each manager would like

to manipulate the beliefs and decisions of the other one in his advantage. Therefore,

communication is noisy. Is there anything we can do to reduce the noise?

In the literature such communication is usually modeled as cheap talk, i.e. an

exchange of non-verifiable, non-binding and payoff-irrelevant messages. The issue is

that the communication process itself is usually assumed to be simultaneous, which

means that all agents (managers) send their messages at the same time. While

this may be reasonable in some settings (e.g. if they prepare written reports for

each other, roughly at the same time), it seems somewhat silly in others (e.g. in

direct verbal communication), where it might make much more sense to introduce

sequential communication schemes, in which one agent speaks first, and the other

listens to him and responds, keeping in mind the information he has just received.

We ask whether and under what conditions such sequential communication would

be better for agents and for the firm as compared to the conventional simultaneous

communication.

Speaking more formally, we consider a two-agent cheap talk model with sym-

metric agents1. Each agent has a piece of private information and possesses decision

rights on some issue. Each agent’s preferences on the decision space depend on the

information he possesses and on the decision of another agent – note that agent

does not exactly care about other’s information, only about his decision. Before

the round of decision-making agents have an opportunity to communicate with each

other, and our question is how does sequential communication scheme perform on

this round in comparison to simultaneous communication.

We find out that simultaneous communication scheme strictly dominates the

1This is unlike conventional “expert advice” cheap talk model, where agents are distinguished
into informed agent (expert) and uninformed principal – in our setting each agent plays both of
these roles.

6



sequential mechanism in case the divisions are more or less similar in size. However,

if one division is significantly larger than another and this other division incurs

sufficiently large losses from miscoordination then sequential communication may

be more preferable, with the larger division as first-mover.

The paper is organized as follows: Section 2 presents the review of relevant

literature. Section 3 sets up the model, Section 4 derives and describes the set of

equilibria in our game – these two sections mostly replicate the results from earlier

papers. Novel results start from Section 5, in which we discuss some properties

of equilibria, while Section 6 discusses the differences between simultaneous and

sequential communication schemes. Section 7 concludes.

2 Related literature

Speaking about cheap talk, one should certainly start with seminal paper by Craw-

ford and Sobel (1982), who introduced this method of communication into the anal-

ysis of an “expert advice” model. They discovered that if interests of principal and

agent, while differing, are sufficiently aligned (i.e. bias of an expert is not too strong)

then transmission of information is possible, though not perfectly. They identify the

existence of multiple equilibria, which differ in precision of transmitted information,

and reasonably conclude that stronger expert’s bias in preferences lowers the upper

bound on the precision of communication. We are mostly interested in extensions

of this model that (a) consider two-sided informational asymmetries and (b) explore

various non-trivial communication mechanisms (i.e. all but one-round simultaneous

signal-sending).

de Barreda (2010) extends Crawford & Sobel’s model for principal to have private

information as well. The author discovers that this private information reduces the

informativeness of messages used by expert, and in wide range of environments

presence of this private information cannot make up for the loss in precision of
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expert’s message, so welfare of both agents decreases. Similar results were obtained

by Lai (2009). Chen (2009) also finds out in a similar setting that giving principal an

opportunity to send a message before the expert sends his does not lead to significant

improvement, since under mild conditions principal would be unwilling to truthfully

reveal his information on this first step. Therefore, in the end we arrive at the result

that two-sided informational asymmetry generally makes things worse, even if it is

supposed to make the decision-maker more informed.

Also of some relevance may be the papers by Battaglini (2003) and McGee and

Yang (2013), which explore settings with uninformed principal and two informed

agents. They would apply for an alternative setup of our model – if division man-

agers communicate their local information to the headquarters instead of each other,

and the HQ possesses all the decision rights (centralized organizational structure).

Battaglini (2003) finds out that in a setting where state of the world can be described

by a multidimensional variable (which is our case – local conditions of one division

would determine one coordinate of this descriptive variable) if all experts possess

full information and linearly independent biases then full revelation is possible in

the model. He also notes that the result is robust to the choice of signaling order,

i.e. it holds in both simultaneous and sequential communication schemes. However,

in our story managers’ information is local, meaning that each manager knows only

his own state, but not states of other divisions, so of more relevance is the paper by

McGee and Yang (2013), who explore a similar setting, in which experts’ informa-

tion is non-overlapping. They discover that “when senders have type-independent

biases, their information transmissions exhibit strategic complementarity: more in-

formation transmitted by one sender leads to more information being transmitted

by the other sender”, while in case of type-dependent biases signaling can exhibit

strategic substitutability.

A more general result for two-player cheap talk games with two-sided asymmetry

is presented by Amitai (1996), who characterizes the set of equilibria in such games.
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He discovers that unlike in one-sided information case, the set of equilibria depends

heavily on the set of possible messages. However, his results apply to finite games

only (with finite sets of actions and messages), while most cheap talk games are

continuous in the sense that they allow for continual sets of actions and messages.

Galeotti et al. (2013) explore a problem similar to ours – cheap talk in the con-

text of payoffs depending on others’ decisions, – in a network setting. However, they

focus mainly on network effects of such communication, which are not explored in

our paper. In particular, they find out that agent’s incentives to truthfully com-

municate with another agent, speaking in social choice terms, do not satisfy IIA –

Independence of Irrelevant Agents, – and actually depend on the number of agents

already truthfully communicating with the recipient. They also discover that social

welfare depends not just on the absolute amount of truth in the society, but on

the equability of distribution of truth as well – meaning that all agents should hear

similar amounts of truth.

As for non-trivial communication mechanisms, Aumann and Hart (2003) char-

acterize the set of equilibrium payoffs in general two-person cheap talk games with

one-sided asymmetry, where unboundedly long talks are allowed. They discover

that multi-stage communication opens path for equilibria which Pareto-dominate

the ones that are possible under single round of communication.

Ottaviani and Sørensen (2001) investigate a problem different from ours: they

try to establish an optimal order of speech of committee members during a debate

and argue that “optimizing over the order of speech can improve the extraction of

information, but not perfectly so”.

Concerning cheap talk applications to organizational economics, it is worth men-

tioning papers by Dessein (2002); Alonso and Matouschek (2007); Alonso et al.

(2008a,b, 2009); Rantakari (2008); Bester (2009), which examine the effect of com-

munication in the presence of coordination-adaptation trade-off on the optimal al-

location of decision rights – i.e. whether it is worthwhile to delegate the decision

9



rights to division managers or it is better to retain them at headquarters. Most of

them find out that both organizational structures may be optimal depending on the

situation and derive conditions that identify areas in the parameter space, where

one structure dominates the other.

3 Model

In order to investigate the effect of local information on the performance of different

communication schemes we employ the firm model proposed by Rantakari (2008).

This model is also quite similar to the one used by Alonso, Dessein and Matouschek

(2008b; hereinafter referred to as ADM), so some results from these papers will also

be applied to our paper. In particular, in our analysis we employ part of Lemma

A2 and Proposition 2 from ADM as well as some pieces of intuition from Rantakari.

Also, as was noted in the Introduction, this section (model set-up) as well as the

next one (search for equilibria) inevitably repeat the corresponding pieces of these

papers, since the model we employ possesses no significant differences from the

ones presented there. Most novel results obtained in this paper are concentrated in

sections 5 and 6.

The model describes an enterprise consisting of 2 divisions, each of which is

controlled by a separate manager. Each division faces a trade-off between adapting

to local environment, expressed by θi ∼ i.i.d. U [−s; s], ∀i ∈ {1; 2}, and coordinating

with other divisions. Manager of each division i should make a decision di ∈ [−s; s]

so as to maximize the profit of his division2, which is given by the following profit

function:

πi = Π− ri ·
[
δi (di − θi)2 + (1− δi) (di − dj)2] (1)

The first term, Π ∈ R, stands for maximal possible profit that a division can

2For simplicity we ignore the possibility of stimulating manager by bonuses for performance of
the whole firm (which also includes profits of other divisions) and assume that his salary depends
on the performance of his division only.

10



achieve in the absence of any losses from misadaptation or miscoordination repre-

sented by the following two terms. This term is purely illustrative and does not bear

any functional load, so instead of considering profits we might as well consider the

loss functions:

Li = ri ·
[
δi (di − θi)2 + (1− δi) (di − dj)2] (2)

Multiplier ri ∈ R+ stands for relative size of the division (or weight that head-

quarters puts on its profits). The first quadratic term in equation (2), (di − θi)2,

represents losses from misadaptation (we will also call them adaptation losses when-

ever convenient). We assume that division i incurs quadratic losses if the decision di

of its manager does not coincide with the local conditions θi, i.e. the division does

not fully adapt to local environment. This setting allows for rather painless light

misadaptation, while fully ignoring local conditions and not adapting to them at all

is very costly. This cost may arise, for example, from the demand side of the market:

if consumers’ preferences are not perfectly matched by the supply of corresponding

division, some consumers may not buy the good, and, therefore, sales and profits will

be lower. Similarly, the second quadratic term, (di − dj)2, represents costs of mis-

coordination (sometimes referred to as coordination costs): division i suffers losses

if it does not match the decision of another division. Such cost is more likely to

arise due to some features of firm’s technology of production, which, e.g., requires

coordination of production decisions across divisions. Coefficient δi ∈ (0; 1)3 stands

for relative importance of adaptation for division i, so (1− δi) would be relative

importance of coordination or “dependability”.

As for informational setting: parameters {ri; δi}2
i=1 and the functional form of

profit/loss function are common knowledge. On the other hand, information about

local environment, θi, is available only to the manager of the corresponding divi-

3Including 0 and 1 in the domain of δi would allow for some artifacts – for example, with
δ1 = δ2 = 0 we would have coordination as the only issue, so our game would degenerate into some
kind of continuous coordination game, while with δ1 = δ2 = 1 only adaptation matters, so there is
actually no sense in communication. Mixed cases with δi = 1, δj = 0 are also possible, but are of
no interest either. Therefore, we restrict our analysis to interior values of δ’s.
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sion and is unknown to another manager – that is exactly why it is local infor-

mation. However, there is a possibility for communication: before the round of

decision-making one round of communication occurs, i.e. each manager makes an

announcement m̃i ∈ [−s; s] about his state. This announcement is heard by the

other manager, but there is no opportunity for him to verify the truthfulness of the

incoming message. Moreover, we make a reasonable assumption that managers are

unable or unwilling to ex-ante commit to strategies that depend on the information

received. Finally, this announcement has no direct effect on payoffs. These three

characteristics of messages (non-verifiable, non-binding and payoff-irrelevant) imply

that communication takes form of cheap talk (Crawford and Sobel, 1982).

The timing of the game is as follows:

1. Nature makes a random draw of {θi}2
i=1, where θi ∼ i.i.d. U [−s; s], ∀i ∈ {1; 2}

2. Each manager i learns his θi

3. Managers simultaneously or sequentially make their announcements m̃i

4. After each manager i learns the announcement made by other agent, decisions

di are made

5. Payoffs are realized

4 Solving for equilibrium

In this paper we use the concept of Perfect Bayesian equilibrium, which implies that

communication rules are optimal given decision rules, the latter are optimal given

beliefs, and beliefs are calculated by Bayes rule whenever possible. We solve the

model by backward induction.

On the last step, both agents possess some beliefs about another agent’s state

(expressed by some posterior belief distribution Fi (θj|m̃j)), and make optimal deci-

12



sions given these beliefs:

EiLi = Ei
[
ri ·
(
δi (di − θi)2 + (1− δi) (di − dj)2) |m̃j

]
→ max

di∈[−si;si]
(3)

= riδi (di − θi)2 + ri (1− δi)Ei
[
(di − dj)2 |m̃j

]
→ max

di∈[−si;si]

This is a simple maximization problem. Assuming interior solution, first order con-

dition w.r.t. di looks as follows:

2ri [δi (di − θi) + (1− δi) (di − Ei (dj|m̃j))] = 0

⇔ di = δiθi + (1− δi)Ei (dj|m̃j) (4)

We see that optimal decision rule is a convex (since δi ∈ (0; 1)) combination of

θi ∈ [−s; s] and Ei (dj|m̃j), where dj also belongs to [−s; s]. Consequently, di will

belong to [−s; s] as well, so the solution is indeed interior.

The right-hand side of expression (4) involves expected decision of another agent.

In order to find it let us take similar f.o.c. for agent j and take its expectation:

Ei (dj|m̃j) = δjEi (θj|m̃j) + (1− δj)Ei (Ej (di|m̃i)) (5)

Note that Ei (Ej (di|m̃i)) = Ej (di|m̃i), because agent i can perfectly predict j’s

reaction to his message m̃i. Also, denote:

mj := Ei (θj|m̃j) (6)

as the “effective message” of agent j or belief about θj instilled by j in i4. Then

4Note that due to quadratic loss functions, Ei (θj |m̃j) is the only information that is used from
the whole posterior belief distribution Fi (θj |m̃j), which simplifies our lives a lot.
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substituting Ej (di|mi) from similar f.o.c. for i into the previous expression yields us

Ei (dj|m̃j) = δjmj + (1− δj) [δimi + (1− δi)Ei (dj|m̃j)]

⇔ Ei (dj|m̃j) =
δjmj + (1− δj) δimi

δi + δj − δiδj
(7)

And so optimal decision rules are given by

di = δiθi +
1− δi

δi + δj − δiδj
(δjmj + (1− δj) δimi) (8)

Therefore, we see that optimal decision rule is a convex combination5 of own state,

belief about other agent’s state and the belief that i has instilled in other agent

concerning i’s state6. These three elements represent three effects as identified by

Rantakari. The first is direct adaptation effect – decision should be close to own state

simply because of losses from misadaptation. As stated by Rantakari, “it measures

how much the manager would respond to his information absent any accommodation

by the other division”. The second term, mj, represents coordination effect – I (as

agent i) know that your (j’s) decision should by similar logic be close to your state

(which I expect to be mj), and I would like my decision to be close to yours because

of the need for coordination, so I adjust my decision towards mj.

The third term, mi, stands for induced adaptation effect. Intuitively, mi is the

belief that I have instilled in you about my state. While discussing the two previous

effects I assumed that adaptation was your only goal, so you would make a decision

around your θj, and since I want my decision to be between my state θi and your

decision dj, I took it as a weighted average of θi and mj. But because of the coordi-

nation effect described above, you are also willing to shift your decision dj towards

mi, your belief about my state, and this action of yours mitigates my coordination

problem, thus allowing me to increase the amount of adaptation.

5One can easily see that given δi, δj ∈ (0; 1), all three weights (at θi, mi & mj) also lie in (0; 1).
6Since all these three elements belong to [−s; s], their convex combination also lies in [−s; s],

which is one more evidence in favor of the solution being interior.
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Having found the optimal decision rules, let us now turn to communication strate-

gies. We see from equations (8) and (6) that decisions depend only on own states

and both expected states given messages. Let us first show that no perfect revelation

equilibrium is possible.

Proposition 1. No perfect revelation equilibrium is possible.

Proof. Assume there is. Then ∀θi ∃m̃i s.t. mi (= Ej (θi|m̃i)) = θi. Therefore, agent

i is able to instill any possible belief in agent j (and vice versa), so we may solve a

maximization problem w.r.t. mi and see what message agent i would like to send in

such a situation. Substituting optimal decision rules (8) into the loss function (2)

yields the following problem:

Li = ri (1− δi)Ei

[
δi (1− δi)

(
−θi +

δjmj + (1− δj) δimi

δi + δj − δiδj

)2

+ (9)

+

(
δiθi − δjθj +

mjδ
2
j (1− δi)−miδ

2
i (1− δj)

δi + δj − δiδj

)2
]
→ min

mi

From f.o.c. of this problem (recalling that prior beliefs are Eiθj = Eimj = 0) we

obtain the desired belief mi = θi
δi+δj−δiδj
δi−δiδj 6= θi, therefore, it is always profitable for

agent i to deviate from truth-telling.7

Therefore, we resort to Crawford & Sobel’s classic “interval equilibria”, in which

the whole state/message space is partitioned into intervals, and message m̃i indicates

that state θi belongs to one of these intervals, but does not disclose its exact location.

In particular, denote this partition as {aik}Ni

k=0, where −s = ai0 < ai1 < ... < aiNi
=

s. Then message m̃i ∈ [aik; ai,k+1] is supposed to mean that θi ∈ [aik; ai,k+1] and

give no further information, so mi = Ej (θi|m̃i) =
aik+ai,k+1

2
. Let us now find this

7Crucial here is the assumption that zero and one are not in the domain of delta. In fact, if
δi = 1 then agent i does not care about coordination and, as a consequence, about communication,
so he does not actually have any incentives to misreport his information, and perfect revelation is
possible.
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partition. It is done from the indifference condition: if θi = aik, then agent i should

be indifferent between sending messages mi =
aik+ai,k+1

2
and mi =

ai,k−1+aik
2

:

Ei
(
Li|θi = ak,mi =

aik + ai,k+1

2
,mj

)
= Ei

(
Li|θi = ak,mi =

ai,k−1 + aik
2

,mj

)
(10)

where mj refers to i’s belief about θj at the moment of choosing mi, i.e. mj =

Ei (θj|m̃j) in case i has already received message m̃j (which means that he is a

“follower” in a sequential communication game) and mj = Ei (θj|∅) = Ei (θj) = 0 in

case he has not (valid for all other cases – “leader” in a sequential communication

game and both agents in simultaneous communication case). Condition (10) after

some transformations turns into a second-order recurrent equation:

|ai,k+1 − ai,k| − |ai,k − ai,k−1| =
4δj

(1− δj) δi
(ai,k −mj) (11)

Solving this equation with initial conditions ai,0 = −s; ai,Ni
= s yields us the

sequence {aik}Ni

k=0, which characterizes the equilibrium communication scheme with

Ni communication intervals:

ai,k = mj +
(s−mj)

(
x2k
i − x−2k

i

)
− (s+mj)

(
x

2(Ni−k)
i − x−2(Ni−k)

i

)
x2Ni
i − x−2Ni

i

(12)

where xi =
(√

1 +
δj

(1−δj)δi
+
√

δj
(1−δj)δi

)2

> 1. Some of our most sagacious readers

might infer out of expression (12) that intervals are pretty wide on the edges of the

state space (close to s or −s, i.e. when k → Ni or k → 0), while they are much

more densely concentrated around mj. Another interesting point is that unlike in

Crawford & Sobel’s model, here we do not have an upper bound onNi, so there would

be infinitely many equilibria on communication stage, one for each pair (N1;N2) ∈

N× N. Let us then characterize the full set of equilibria8:

8Characterization for the case of simultaneous communication is completely analogous (except
for differences in notation) to the one obtained by ADM and Rantakari. On the other hand,
characterization of communication equilibria for the case of sequential communication is a novel
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Proposition 2. For any communication mechanism (sequential or simultaneous)

there exists an infinite number of equilibria, each of which can be characterized by a

pair of positive integers (N1;N2) ∈ N2, such that ∀i = {1; 2}, j = 3− i:

• Optimal decision rules di (θi,mi,mj) are given by equation (8);

• Communication rules are as follows: any message m̃i ∈ [ai,k−1; ai,k] is sent

with equal non-zero probability density 1
ai,k−ai,k−1

if θi ∈ [ai,k−1; ai,k] and sent

with probability zero otherwise, ∀k = 1, Ni;

• Beliefs Fi (θj|m̃j) specify equal non-zero probability density 1
aj,k−aj,k−1

to any

state θj ∈ [aj,k−1; aj,k] if message m̃j ∈ [aj,k−1; aj,k] and probability zero other-

wise, for ∀k = 1, Nj;

• Partitions {ai,k}Ni

k=1 are defined as in equation (12).

Proof. In the text above.

In fact, for each pair of numbers of intervals (N1;N2) ∈ N2 there exist many equilibria

with different communication rules (different from the ones described in the second

point of Proposition 2). For example, one other equilibrium can be characterized by

m̃i =
ai−1,k+ai,k

2
(= mi) if θi ∈ [ai,k−1; ai,k] ∀k = 1, Ni. There exists a variety of other

equilibria with different message domains, but in case we wanted to use them an issue

of out-of-equilibrium beliefs would arise, since not all messages would have been sent

in equilibrium. Communication rule from Proposition 2 is the simplest among those

that exploit the whole message space (but not unique – messages do not necessarily

need to be distributed uniformly within one interval), which allows to avoid out-

of-equilibrium problems – so we focus on this equilibrium in further analysis, since

considering the whole family of communication equilibria would mean nothing in

terms of results, but would add plenty of headache in terms of formal analysis.

result.
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In fact, Proposition 2 allows us to make one interesting conclusion concerning

the relation between equilibrium strategies in sequential and simultaneous games:

Corollary 1. From Proposition 2 it can be inferred that leader’s behaviour in se-

quential communication game is completely analogous to the one in simultaneous

communication game. Behaviour of the follower in sequential game is described by

the same decision rule, but different communication rule.

Therefore, we may actually make a conclusion that the leader (agent who speaks

first), while having an opportunity to affect follower’s communication strategy, does

not exploit it and behaves as if the follower did not base his messages on the one

received from the leader. This has an easy explanation behind it: leader’s messages

affect the partition used by the follower, but do not change follower’s expected

message: it is easy to see that E (mf ) = 0. And we have already argued that

because of quadratic cost assumption, only average values actually matter in our

problem – thus leader’s messages do not affect follower’s communication strategy in

such a way which would affect leader’s expected payoff, and leader has no incentives

to change his behaviour in any way due to this “leadership”.

Figure 1: Illustration of sequential communication equilibrium
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5 Properties of equilibria

Figure 1 gives an example of equilibrium on communication stage for the case of

sequential communication. The upper line represents state/message space of agent

1, who also is the first to send his message. Since he has no non-trivial information

about θ2 (agent 2 has not yet sent his message), agent 1’s belief is m2 = 0, so the

intervals are most densely located around zero, and the partition is symmetric around

zero. In case of simultaneous communication, agent 2 would have a similar partition

(meaning concentrated around zero; it would be completely the same only if δi = δj

and Ni = Nj). However, in our case agent 2 would already have some information

to update his beliefs: in particular, he would have already received message m̃1 and

thus obtained knowledge that θ1 belongs to the blue interval (on the upper line),

so his communication intervals would now be concentrated not around zero, but

around this new posterior belief m1 (on the lower line).

Why does this concentration of intervals happen? It originates from the type-

dependence of agent’s bias which is implicitly present in the model: if an agent

expects his local conditions to coincide with those of his counterpart, then there

would be no conflict of interests – both agents would be able to fully adapt to their

respective conditions and fully coordinate at the same time. Such alignment of

interests as perceived by agent j happens if θj = Ej (θi|m̃i) = mi for (if j is) the

follower in sequential game and if θj = Ej (θi) = 0 for the leader in sequential and

both agents in simultaneous game. We can see that these are points of the highest

concentration of intervals – intervals are extremely small around these points, so

noise in communication is minimal, agent is willing to communicate truthfully or

almost truthfully in these cases. On the other hand, the farther is agent’s state θ from

this point of no conflict, the more serious is the conflict of interests as perceived by

him, so stronger are the incentives for him to misreport the information he possesses.

Therefore, he has to introduce noise into his messages, and this noise gets larger –

intervals get wider, – the farther agent’s state is from the point of no conflict.
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In our example we can see that given the same number of intervals, the partition

for agent 2 (on the lower line of Figure 1) is more informative about low states (left

on the axis) than partition of agent 1, because intervals are concentrated below zero

for agent 2; the opposite can be said about high (positive) θ’s – agent 1’s partition

performs much better transmitting information about these. So in the end, which

partition of these would be more informative on average? To answer this question

we need to introduce some measure of informativeness of equilibrium.

Denote σi := V (mi) = E (m2
i ) − E (mi)

2 and call it “message variance”. Note

that E (mi) =
´ s
−smidθi´ s
−s dθi

= 1
2s

∑Ni

k=1

´ ai,k
ai,k−1

ai,k+ai,k−1

2
dθi = 1

4s

∑Ni

k=1

(
a2
i,k − a2

i,k−1

)
=

= 1
4s

(
−a2

i,0 + a2
i,1 − a2

i,1 + a2
i,2 + ...+ a2

i,Ni

)
= 1

4s

(
−a2

i,0 + a2
i,Ni

)
= 1

4s
(−s2 + s2) = 0.

Therefore, σi = E (m2
i ). Moreover, referring to Lemma 2 from ADM, we may also

say that E (m2
i ) = E (miθi).

Consider a measure of residual variance: E
[
(θi − E (θi|m̃i))

2] = E
[
(θi −mi)

2].
It characterizes the share of variation of θi that is not described by messages mi.

E
[
(θi −mi)

2] = E [θ2
i − 2θimi +m2

i ] = E (θ2
i )− 2σi + σi = s2

3
− σi. We can see that

residual variance is a linear function of σi, therefore σi may as well be used as a

measure of informativeness. Informative equilibrium implies low residual variance

(so that smaller share of variance of θi remains unexplained), which means higher

σi. Therefore, σi is positively associated with informativeness of equilibria.

Lemma 1. Message variance σi and, thus, informativeness of equilibrium (ceteris

paribus) increases with Ni, and decreases with |mj|.

Proof. First of all, let us find the closed-form expression for σi:

σi (mj) = E(m2
i |mj) =

1

2s

ˆ s

−s

(
ai,k−1 + ai,k

2

)2

dθi

=
1

2s

Ni∑
k=1

ˆ ai,k

ai,k−1

(
ai,k−1 + ai,k

2

)2

dθi

=
1

8s

Ni∑
k=1

(ai,k−1 + ai,k)
2 (ai,k − ai,k−1)
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Substituting the expressions for ai,k and taking sums, after some very lengthy

calculations, any step of which is too long to be presented here, one can obtain

σi (mj) = s2

4

(
xi+1

x
Ni
i −1

)2(
x

2Ni
i +x

Ni
i +1

x2
i +xi+1

− x
Ni
i

xi

)
− m2

j

4

(
xi−1

x
Ni
i +1

)2 (
x
Ni−1
i −1

)(
x
Ni+1
i −1

)
x2
i +xi+1

. One

can see that σi (mj) = γ1 − γ2m
2
j for some positive γ2 (its positivity follows directly

from the fact that xi > 1). Therefore, σi reaches its maximum at mj = 0 and it is

diminishing in |mj| (or, equivalently, in m2
j).

In order to obtain comparative statics signs for other parameters, let us introduce

a function f(p) such that f
(
xNi
i

)
= σi (mj): f(p) = s2

4

(
xi+1
p−1

)2 (
p2+p+1
x2
i +xi+1

− p
xi

)
−

m2
j

4

(
xi−1
p+1

)2 (p−x)(p− 1
x)

x2
i +xi+1

. One may verify that f(p) is an increasing function of p for

p > 1: f ′(p) =
(x2

i−1)
2

4xi(x2
i +xi+1)

s2(p+1)4−m2
j (p−1)4

(p2−1)3 is positive if p > 1 (since m2
j ≤ s2). We

already know that xi > 1 and Ni ≥ 1, so in our problem it is always the case that

p > 1. Therefore, it can be said that σi is increasing in xNi
i . Since Ni does not enter

the expression for xi, its only effect on xNi
i is through the power, and since xi > 1,

xNi
i is increasing in Ni.

Corollary 2. Follower’s messages are (ceteris paribus) on average less informative

than those of the leader or of a player in simultaneous communication game.

Proof. Recall the definition of mi: we said that it is the belief about θi at the

moment of making a communication decision by j. Therefore, mi = 0 for both

players in simultaneous communication game, and mi = 0 for the leader (first-

mover) in sequential communication case. On the other hand, mi ∈ (−s; s) for the

follower in sequential communication, so on average |mj| will be above zero, which

by Lemma 1 means that ex ante expected σi of the follower would be lower compared

to the leader and to the simultaneous communication case.

One explanation for this (corollary) is geometric: message variance is basically

an average of squared distances from each possible point in the state/message space

to the center of the corresponding interval – i.e. average squared distance from
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message m̃ to information m contained in it. We see from Figure 1 that given the

same number of intervals, follower’s communication strategy will involve very wide

intervals on one side of state/message space, so some of mentioned squared distances

will be very high on this interval, thus driving an increase in message variance.

More intuitive rephrasing of the previous paragraph involves the argument about

follower’s incentive compatibility that we had while discussing why the communica-

tion intervals are concentrated around a certain point. In particular, we have found

out that intervals should be wider the further an agent’s state (θj) is from his ex-

pectation of other agent’s state (Ej (θi|...), which is 0 or mi depending on j’s role

in the game). For the leader in sequential game (and both players in simultaneous)

this expectation is zero, and both “radical” states, meaning θj = −s and θj = s are

equidistant from this expectation (distance is, obviously, equal to s). For the fol-

lower maximal distance from this expectation to his state is s+ |mi|9 – this distance

is larger than for the leader, so his message in case of such extreme state should

be more vague. In fact, this vagueness outweighs higher precision in messages in

case of states on the other extreme (on the other edge of the domain) and drives an

increase of message variance, meaning that on average follower’s messages would be

less informative.

Overall, as we have already discussed in Corollary 1, this difference in infor-

mativeness is the only difference between the two schemes: leader in sequential

communication game behaves exactly as both players do in simultaneous commu-

nication game, while the follower has to make adjustments to his communication

strategy because of the additional information that he possesses.

But how do agents’ payoffs depend on the informativeness of messages in equilib-

rium (which is measured by sigmas)? If we expand expression (9) and take ex-ante

expectation (before θs are realized) of this loss function, we would obtain the fol-

9Suppose mi < 0. Then the state which is most distant from this point would be θj = s, and
the distance would be s−mi = s+ |mi|. Similarly for mi > 0.

22



lowing:

ELi = ri (1− δi)

((
δi + δ2

j

) s2

3
− σi

δ2
i (1− δj) [δi (1− δj) + 2δj]

(δi + δj − δiδj)2 + (13)

+σj
δ2
j (1− δi)

[
δi (1− δj)2 − δ2

j

]
(δi + δj − δiδj)2

)

After taking a look at this expression we can make the following statements:

Lemma 2. (a) ∂ELi

∂σi
< 0 for all parameter values, so division profits are positively

associated with the informativeness of the message sent.

(b) ∂ELi

∂σj
< 0 iff δi <

(
δj

1−δj

)2

(or, equivalently, iff δj >
√
δi

1+
√
δi

). Therefore,

division profits are positively associated with the informativeness of the incoming

message if and only if this division is dependent enough (or vice versa – if another

division is independent enough).

A discussion of this Lemma follows up to the end of the current section.

We can see that ∂ELi

∂σi
= −ri (1− δi) δ2

i (1−δj)[δi(1−δj)+2δj ]

(δi+δj−δiδj)2 < 0, so expected losses

decrease in variance of own message. Therefore, it is beneficial to send the most

informative message possible as long as it is incentive compatible. The reason for

this is that more informative message allows your counterpart to make more precise

inferences about your state (and, thus, decision) and accommodate with it better,

which on average reduces your coordination losses. However, as we have seen in

Proposition 1, you cannot send an absolutely precise message which would also be

truthful, so in the end you would like to transmit as much information as possible,

while the message is vague enough for you to stay honest.

Since all our equilibria are incentive compatible by definition, agents would prefer

the most informative out of them – the most desirable for agent i would be the

one with the highest σi. Consequently, since each agent is able to choose among

equilibria by varying his Ni, we may choose some “focal” equilibrium – this will be
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Figure 2: ∂EL1

∂σ2
= 0 line

the one with Ni → ∞ ∀i ∈ {1; 2}. ADM show in their Proposition 2 that such

“limit” equilibrium exists. In fact, if we include Ni in the strategy of player i (thus

making it a choice variable), such limit equilibrium would become the unique (up to

irrelevant transformations of communication rule, as discussed at the end of Section

4) equilibrium of the game10.

As for dependence on other agent’s σ, it is ambiguous and may go both ways:

∂ELi

∂σj
= ri (1− δi)

δ2
j (1−δi)[δi(1−δj)2−δ2

j ]
(δi+δj−δiδj)2 ≷ 0. Specifically, ∂ELi

∂σj
> 0 ⇔ δi >

(
δj

1−δj

)2

.

Graphically, this looks as in Figure 2: if parameters (δ1; δ2) fall into the upper

region (denoted as A), then ∂EL1

∂σ2
< 0, i.e. profits of agent 1 increase in σ2. Vice

versa, if vector of deltas falls into region B, then EL1 depends positively on σ2.

Obviously, an explanation of such non-monotonicity is required – it is not really

straightforward why in some cases (for some values of parameters) I want to receive

as much information from you as possible, and in others – vice versa, I do not

really want you to transmit any information. An educated guess would be that (at

least) two effects are present here, and each of them dominates for some parameter

values – and this guess would be correct. For the sake of clarity let us name our two

10However, the issue is that players would have to precommit to their respective Ns before the
game itself and before they learn their θs – it appears to us that this might be troublesome.
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managers as Alice and Bob (and denote them using subscripts A and B respectively;

subscripts i and j are applicable to any of them, but within one formula we always

imply i 6= j).

So suppose that we want to examine the effect that the informativeness of Bob’s

message has on Alice’s profits. From Section 4 we know that Bob’s message affects

decisions of both players: it enters Alice’s decision dA (θA,mB,mA) in coordina-

tion term and Bob’s decision dB (θB,mA,mB) in induced adaptation term (consult

Section 4 in case you need to refresh the knowledge of which effects does agent’s op-

timal decision rule accommodate). Also, recall that Alice’s loss (or profit) function is

composed of adaptation loss term (dA − θA)2 and coordination loss term (dA − dB)2.

Expanding loss function and collecting terms containing σB yields us the following

expression:

ELA = ...+ σB·

 δ2
BδA (1− δA)

(δA + δB − δAδB)2︸ ︷︷ ︸ −(1− δA) δ3
B (2δA + δB − δAδB)

(δA + δB − δAδB)2︸ ︷︷ ︸


adaptation coordination

(14)

It tells us that informativeness of Bob’s messages is positively associated with

Alice’s adaptation losses and negatively – with her coordination losses.

The only element in adaptation term of the loss function that depends on mB

is dA. Therefore, Bob’s message affects Alice’s adaptation losses only through the

coordination term in Alice’s decision. We have discussed earlier that better precision

of incoming message allows for better coordination – in this case Alice would be able

to coordinate better with Bob’s decision because she has more precise information

concerning this decision. However, this coordination comes at cost of adaptation.

In order to understand this cost, note that a more informative communication rule

mB (θB) is in fact a mean-preserving spread of a less informative communication

rule. Let us denote the situation of less informative communication using superscript
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L, and the one with more informative communication with superscript M – then

mM
B >MPS m

L
B (meaning mM

B is a mean-preserving spread of mL
B). Also, since Alice’s

decision dA is a linear combination of θA, mA and mB, and the first two elements stay

the same during such transition (from less to more informative communication on

Bob’s behalf), then we can also say that dMA >MPS d
L
A, i.e. more information applies

a mean-preserving spread on Alice’s decision meaning that this decision becomes

more volatile (for fixed θA). A straightforward conclusion from this fact is given by

Lemma 3.

Lemma 3. If dMA >MPS d
L
A for any given θA then E

(
dMA − θA

)2
> E

(
dLA − θA

)2
.

Proof. Expected adaptation losses are computed in the following way: E (dA − θA)2 =
´ s
−s

[´ s
−s (dA (θA,mB (m̃B) ,mA (θA))− θA)2 dm̃B

]
dθA where we can write the inner

integral like that because, as a matter of fact, we defined communication equilibria

in such a way that any message m̃B is sent with equal probability in any of them,

and what communication rule actually defines is other player’s belief rule mB (m̃B).

Then we can rewrite the integral as follows:

E (dA − θA)2 =

ˆ s

−s

[ˆ s

−s

(
d2
A (θA, m̃B)− 2θAdA (θA, m̃B) + θ2

A

)
dm̃B

]
dθA =

=

ˆ s

−s

[
2sθ2

A − 2θAEm̃B
(dA) + Em̃B

(
d2
A

)]
dθA (15)

and given that dMA >MPS d
L
A (for given θA), we can say that in the previous expression

Em̃B

(
dMA
)

= Em̃B

(
dLA
)
, while Em̃B

(
dM

2

A

)
> Em̃B

(
dL

2

A

)
(because E

(
dMA
)

= E
(
dLA
)

and V
(
dMA
)
> V

(
dLA
)

follow trivially from the definition of a mean-preserving

spread). Therefore, the integrand in equation (15) will be point-wise larger for

dMA than for dLA, which means that the whole integral in equation (15) will also be

larger, so E
(
dMA − θA

)2
> E

(
dLA − θA

)2
.

The conclusion is that more precise incoming message increases adaptation losses.
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This conclusion is confirmed by equation (14) – one can see that the coefficient at

σB coming from adaptation loss term is positive.

Now let us turn to the coordination loss term in the loss function. Bob’s message

mB enters twice here: as a coordination term in Alice’s decision dA and induced

adaptation term in Bob’s decision dB. It seems straightforward that if only the first

of these channels was active, then Alice’s coordination losses would decrease, since

better message would allow her to coordinate better with Bob. However, Bob is

aware of this improvement in coordination on Alice’s behalf, and is thus able to

exercise more induced adaptation – so his decision will now on average be closer

to his state. What is more important, his decision will become more volatile and

more difficult to coordinate with, which partly negates Alice’s coordination effort.

In other words, Alice is still able to improve on coordination, but because of Bob’s

shift in behaviour this improvement is not as large as it could be. In particular, we

can see from expression 14 that expected coordination losses are indeed decreasing

with σB (informativeness of Bob’s message).

Summing up, higher precision of incoming message has two effects in terms of

agents’ actions, which combine to produce two effects on total expected losses (each

of which may dominate depending on the parameter values). On the one hand,

an improvement in precision of Bob’s message allows Alice to coordinate with Bob

better. However, this improvement in coordination comes at cost of adaptation, so

Alice’s average adaptation losses increase. On the other hand, Bob, being aware of

Alice’s improved coordination, may now give more weight to adaptation, which to

some degree negates Alice’s coordination effort, and thus Alice’s coordination costs

decrease, but not as much as desired.

Finally, one more claim that needs to be made is that even when profits are

negatively associated with the precision of incoming message (i.e. ∂ELi

∂σj
> 0, so

additional adaptation losses dominate benefits gained in terms of coordination), the

strength of this association is not that high relative to its magnitudes of opposite
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(a) ∂ELi

∂σj
(b) Positive part of ∂ELi

∂σj

Figure 3: Sensitivity of expected losses to precision of incoming message

Figure 4: Sensitivity of expected losses to precision of own message – ∂ELi

∂σi

sign (for other pairs of deltas; can be seen on Figure 3) and relative to magnitudes

of sensitivity to precision of own message (∂ELi

∂σi
; Figure 4).

6 Simultaneous vs. sequential communication

General result of this section is formalized by Proposition 3:

Proposition 3. Sequential communication scheme with division 1 as leader is pre-

ferred to simultaneous communication scheme:

(a) by the follower – never; he strictly prefers simultaneous communication;

(b) by the leader – iff δ1 >
(

δ2
1−δ2

)2

;

(c) by the firm – iff r1
r2

(1− δ1) (δ1 (1− δ2
2)− δ2

2) > (1− δ2) (δ2 + 2δ1 − δ1δ2).

Proof. In the text below.
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The considerations given in previous subsection allow us to finally compare the

two types of communication procedures. Denote the first-mover (leader) in sequen-

tial communication game as agent 1; then follower will be agent 2. Then the following

list summarizes the necessary facts obtained earlier:

• If we move from simultaneous communication to sequential then σ1 remains

unchanged, while σ2 decreases;

• ∂ELi

∂σi
< 0;

• ∂ELi

∂σj
> 0 iff δi >

(
δj

1−δj

)2

.

Combining these three facts, we can make an inference that profits of the follower

are lower (losses are higher) in sequential communication case (∂EL2

∂σ2
< 0 and σ2

decreases). As for the leader, his profits increase if δ1 >
(

δ2
1−δ2

)2

and fall other-

wise. Therefore, we see that sequential communication may only be beneficial to

the leader, but always harms the follower. In other words, in some cases I may want

you to hear my message before you send yours, but you strictly prefer not doing it,

since on average that would make your message less precise and harm your profits.

This is a surprising result: we would expect follower to increase his profits be-

cause of the informational advantage that he obtains in the sequential communica-

tion game, especially in the absence of any changes in behavior of the leader (un-

like, for example, in Stackelberg duopoly model, where the leader exploits follower’s

knowledge in order to manipulate his actions in some sense and obtain higher profit

at the cost of the follower). But nonetheless, this informational advantage seems to

be playing against its possessor: adjustment of his communication strategy to this

new piece of information makes his messages less precise on average, while he wants

them to be as precise as possible (as long as it satisfies the incentive compatibility

constraint).

But what about total firm profits? When does benefit of one agent (division)

outweigh the losses incurred by another? To do this we need to compute the sign of
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Figure 5: Parameter values and firm profitability

sensitivity of total losses to variance of follower’s message.

∂ELΣ

∂σ2

:=
∂E (L1 + L2)

∂σ2

=
δ2

2 (1− δ1)

(δ1 + δ2 − δ1δ2)2

[
r1 (1− δ1)

(
δ1

(
1− δ2

2

)
− δ2

2

)
−(16)

−r2 (1− δ2) (δ2 + 2δ1 − δ1δ2)]

From equation (16) we can see that ∂ELΣ

∂σ2
> 0 is equivalent to the following condition:

r1

r2

(1− δ1)
(
δ1

(
1− δ2

2

)
− δ2

2

)
> (1− δ2) (δ2 + 2δ1 − δ1δ2) (17)

The graphic representation of this condition may be found on Figure 5 for various

values of r1
r2

(relative division sizes). Areas below the corresponding curves represent

parameter combinations, for which sequential communication is more profitable on

the firm level than simultaneous. It is pretty straightforward that if r1
r2
→ ∞, i.e.

the leader’s division secures all firm’s profits, while follower’s division is negligibly

small, then condition for sequential communication to be profitable on the firm level

coincides with similar condition for division 1 (firm prefers sequential communication

whenever the leader does). Then, as r1
r2

decreases, i.e. follower’s department gets

relatively larger, the losses it incurs from switching to sequential communication

start to matter – we can see that the corresponding sets of parameters (for which
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sequential communication is more preferable for the firm than simultaneous) get

smaller. This set stops intersecting the [0; 1]2 parameter space when r1
r2

falls below

2 – speaking differently, if r1 < 2r2 then simultaneous communication scheme is

always more preferable than sequential communication with division 1 as leader11.

It would be also of interest to describe the optimal communication order depend-

ing on deltas (divisions’ dependencies). For the sake of narrative convenience we will

look at transition from simultaneous to sequential communication and explore when

such transition may deem profitable. Recall that during such transition the only

thing that changes is the informativeness of the follower’s message – it decreases, to

be exact. From the discussion of Lemma 2 we know that two effects arise during

such transition:

1. Leader’s adaptation losses decrease because his decisions become less volatile.

2. Coordination losses (shared by both players) increase due to worse coordina-

tion on leader’s behalf (because leader has less knowledge on what to coordi-

nate with), but this effect is mitigated by the follower, who shifts the accents

in his decisions from adaptation towards coordination, and whose decisions

become less volatile and thus easier to coordinate with.

In order for the transition from simultaneous to sequential communication to be

profitable we need the sum of these losses (weighted by division sizes) to decrease

in total. When does it happen?

Let us start with δ2 – follower’s dependency. As one can see from Figure 5, δ2

should be low enough for sequential communication to be more preferable, i.e. the

follower should be dependent enough. Indeed, if this is the case, then both players’

coordination losses should not increase significantly, because the follower will not

allow this to happen – if he predicts that the leader will coordinate worse, then the

follower will have to offset this by changing his own behavior in favor of coordination,

11It is pretty straightforward that if 2r1 < r2 then another sequential communication scheme
may be profitable – with division 2 as leader.
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since it is valued highly by him. Therefore, if the follower is highly dependent then

coordination losses are not likely to be significant, while adaptation gains will still

exist – this is why transition from simultaneous to sequential communication is likely

to be profitable in general.

As for δ1, leader’s dependency, from Figure 5 one can see that it has a non-

monotonic effect on the optimal order of communication: in particular, sequential

communication is more likely to be preferred for average values of δ1. For low values

of δ1 the leader is very dependent and cares little about adaptation, so the gain in

adaptation losses is negligible and is insufficient to cover any additional coordination

losses (which are unavoidable because of worse communication). On the other hand,

if δ1 is high then the story is similar, but adaptation gains are small due to a different

reason: in this case leader always adapts well enough, and he actually cares little

about coordination, so his actions are affected weakly by incoming messages. At

the same time, his decisions are located extremely far from follower’s state (most

weight in his decisions is given to own state), so the follower generally faces a pretty

serious trade-off, incurring heavy costs independently of his decision (these would be

either from miscoordination, or from misadaptation). Therefore, any slight change

in leader’s behaviour would have a strong effect on the follower. The fact that

leader will have a less precise message concerning follower’s state θf means that

his decision will on average be further from this θf (because follower’s message mf

will on average be further from θf ), which is bad news for the follower: his losses

will increase, and because of what we have previously discussed – they will increase

significantly. Combined with not-so-high leader’s gains on adaptation, this gives

us the reason for why under high δ1 transition from simultaneous to sequential

communication is undesirable either, just like in case of low δ1 – only average values

of δ1 may render sequential communication scheme profitable.
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7 Conclusion

In this paper we have examined the issue of choosing a communication mechanism

for a situation of cheap talk with two-sided informational asymmetry. In our story

both agents possess some private information, which is not of direct relevance to

another agent, but at the same time they face a need to coordinate their decisions,

while also adapting them to local conditions, which are specific and different for each

agent. The existence of this trade-off between adaptation and coordination creates a

conflict of interests between agents (since they need to adapt their decisions to differ-

ent conditions), which prevents them from communicating their intentions truthfully

and forces them to introduce noise into their messages. Such setting is particularly

relevant in management and organizational economics: trade-off between adaptation

and coordination is often outlined as one of most important trade-offs in managerial

decision-making, and the phenomena of local information has also shown its rele-

vance in questions of allocation of decision rights and organizational structure of

the firm. In particular, we may consider the mentioned agents as managers running

their respective divisions within a firm: they need to fulfill their own goals, but at

the same time need to somewhat coordinate their actions.

Given this setting and keeping in mind the mentioned imperfections in commu-

nication, we ask the following question: is it best to just speak simultaneously or

would it be better to first listen to what the other agent has to say? In other words,

which communication mechanism is better in such situation: conventional simul-

taneous message-sending, when both agents send their messages at the same time,

or sequential, when one agent receives an incoming message and only after that he

sends his own, thus acquiring an informational advantage? The results turned out

to be surprising.

The “follower” or “listener”, i.e. the agent, who receives the other agent’s mes-

sage before sending his own, turns out to be worse off in this sequential communi-

cation game comparing to the symmetric simultaneous communication case. This
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seems strange given that follower possesses more information in this case and that

first-mover’s strategy (concerning both messages and decisions) is the same as in

simultaneous communication case (i.e. he does not try to exploit follower’s new

knowledge). However, it turns out that this additional information affects follower’s

incentives and forces him to send messages, which are less informative on average.

This leads to worse coordination on behalf of first-mover (because he has less infor-

mation on what to coordinate with) and thus increases losses from miscoordination

of both agents. Follower then has to sacrifice adaptation to some degree in favor of

coordination with the less coordinating counterpart, and his profits decrease.

What is even more surprising in this story is that the leader (agent who sends

his message first and is being listened to) may actually benefit from switching from

simultaneous communication to the sequential scheme: the fact that the follower will

be more willing to coordinate if his message becomes less informative mitigates losses

from generally worse coordination of actions due to worse message, and in the end

these losses may even not be sufficient to cover the benefit that the leader acquires

from adapting better to his own local conditions. Speaking shortly, if the follower

has high enough dependency, then the leader is likely to benefit from receiving a less

precise message.

As for total firm profits (sum of payoffs of both agents), simultaneous commu-

nication strictly dominates the sequential scheme if agents (divisions) are more or

less similar in terms of size (or importance to headquarters) or are both sufficiently

independent, i.e. both face a rather weak need for coordination. On the other hand,

if one division is sufficiently larger than another and possesses some average need

for coordination, while this other division is highly dependent, then sequential com-

munication with the larger division as first-mover may be more preferable for the

firm in general even despite losses that the lesser department will incur.

It is worth noting that under investigation in this paper is the question of optimal

communication order, not equilibrium one. In fact, there is a variety of reasons of
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why these two might diverge. One reason is that one can prescribe a manager

not to speak before the other one is finished, but one cannot force him to listen

and comprehend the incoming information: even under the assumption that this

action does not require any effort on behalf of the manager (which is arguable),

our model predicts that it is simply unprofitable for the manager to listen to his

colleague12, since this in the end reduces profits of his division. Another possibility

for deviation involves leadership: if a manager knows that sending a message early

may be beneficial for him, then he will try to do so, ignoring all prescriptions. In

fact, a situation may arise, in which both managers will be willing to send an early

message.

Solution of these problems should involve more complicated compensation schemes

– we assumed that managers are awarded by the performance of their respective

divisions, while in this case overall firm performance might be a better basis for

compensation. Of course, deeper investigation of this problem should also take into

consideration the moral hazard issues, which have been totally ignored in this paper,

since we assumed that all managers’ actions are costless.

The main direction for further research is considering other, more complicated

communication mechanisms: for example, who said that we should only consider

one-round mechanisms? Is it possible that multi-stage communication will yield

better results for firm as a whole and each agent personally? Another question has

already been outlined in the paragraph above and it asks how we can enforce the

optimal communication mechanism, which may be suboptimal for one of partici-

pating divisions. Finally, we considered only the decentralized setting, where the

headquarters plays no real role, while earlier research shows that sometimes it may

be optimal for the HQ to retain the decision rights (instead of delegating them to

the managers), and in this case managers will be communicating with HQ instead

of each other – optimal mechanism for this case is yet to be found.

12To be exact, a manager does not want to know the other’s information at the moment of
sending a message, but does so at the moment of making a decision.
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